簡易檢索 / 詳目顯示

研究生: 周峻儀
Chun-yi Chou
論文名稱: 氣簾式生物安全櫃的流場與洩漏特性
Flow and Leakage Characteristics of Air-Curtain Biological Safety Cabinet
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 趙振綱
Ching-Kong Chao
陳明志
Ming-Jyh Chern  
孫珍理
Chen-li Sun
林怡均
Yi-Jiun Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 279
中文關鍵詞: 生物安全櫃流場觀察氣簾式生物安全櫃
外文關鍵詞: Biosafety Canbinetry, Flow Visualization, Air curtain-Isolated Fume Hood.
相關次數: 點閱:262下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以流體力學的觀點,發展一氣簾阻截式生物安全櫃,並使用雷射煙霧流場可視化法、壓力診測法及雷射測速儀探討參數變化對流場狀態的影響,並以追蹤氣體濃度偵測方式來評估氣簾式生物安全櫃的洩漏,因而完成此一新型生物安全櫃之操作特性與範圍。將傳統生物安全櫃之櫃門改裝為可以提供一道二維吹氣噴嘴的機構,並於門檻背後設一道下吸式槽縫,當噴嘴與吸氣槽縫適當的運作時,可能使櫃門開口處形成一道空氣簾幕,以此來加強防護櫃內污染物不洩漏至外界的能力。為了瞭解生物安全櫃在運作時,櫃內及櫃門附近的流場型態,使用雷射光頁配合煙霧釋放流場可視化實驗技術進行流場診測研究,分析流場型態,推測造成櫃內污染物洩漏原因,並尋求可能的理想操作模態。吹氣速度、補氣速度、吸氣速度、櫃門開度等四項為影響氣簾式生物安全櫃流場的主要參數。由流場可視化實驗中,可以辨識出,氣簾的行為可以表現為(1)輕微內凹、(2)嚴重內凹、(3)筆直、(4)擺動模態四種特徵模態區域。當操作狀態使得氣簾特徵模態為輕微內凹模態時,櫃內與櫃外無迴流現象產生,且櫃內氣流非常平順的被導入門檻後之吸氣槽縫。另外,櫃內靜壓量測的結果得知,當操作狀態使得特徵模態為輕微內凹模態時,櫃內靜壓可以達到輕微低於外界壓力的狀態。基於過去對氣簾式化學氣櫃之研究經驗,這四種特徵模態中,輕微內凹模態可能會是最佳的操作區域。以追蹤氣體(SF6)模擬NSF/ANSI 49-2004生物安全櫃之微生物測試法,結果顯示,不論是人員防護測試、產品防護測試或交互感染防護測試,中心區域的輕微內凹模態都有非常優異的效能;以EN14175:3-2003穩態及動態追蹤氣體濃度測試後發現,中心區域的輕微內凹模態捕集效能也非常優異。以流場觀察配合濃度測量,結果說明中心區域的輕微內凹模態為氣簾式生物安全櫃最佳的操作區域;對一櫃門開口面積為1.3 m x 0.25 m的氣簾式生物安全櫃,操作於櫃外擾動激烈的環境下,所耗總風量僅需0.4 m3/s,相較於傳統B2型生物安全櫃而言,能源節省約13%。


    This is an experimental study on the applicability of air curtain isolation technique to enhance the containment of the biological safety cabinet. To provide a two-dimensional slot jet, the sash was remodeled and a suction slot was installed just behind the doorsill. This arrangement provides an air-curtain based on the push/pull principle which covers across the sash opening. Laser-assisted flow visualization method, laser Doppler velocimetry and in-cabinet pressure measurements were carried out to identify the characteristic flow modes of the air curtain and the pressure variation in the biological safety cabinet. Four characteristic flow modes were identified namely, slightly concave curtain, severely concave curtain, straight curtain, and oscillating curtain. A slightly concave curtain shows a stable flow field and a smooth flow pattern in the cabinet. The prominent feature is that no recirculation flow structures were found. The in-cabinet pressure measurements show slightly negative pressure appearing in the cabinet when the biological safety cabinet was operated in the regime of slightly concave curtain. Previous work suggested that, operating the cabinet in the regime of the slightly concave curtain can be a good choice to attain high containment efficiency and low leakage level. Performance test of the air-curtain biosafety cabinet was conducted through tracer-gas concentration measurements which simulate NSF/ANSI 49-2004 standard method. Extra-ordinary and satisfactory results were obtained from the said tracer-gas concentration measurements. EN14175-3 standard methods were also employed to test the performance of the air-curtain biosafety cabinet under both the static and dynamic situations, where leakages of the tracer gas approach almost null. The measured tracer-gas concentrations results agree with the observed flow patterns. For an air-curtain biosafety cabinet with opening area of 1.3 m x 0.25 m and operating in a hostile environmental, the total flow rate would be 0.4 m3/s. It is about 13% less than that of the conventional type B2 biosafety cabinet.

    摘要………………………………………………………………… i Abstract…………………………………………………………… ii 致謝………………………………………………………………… iii 目錄………………………………………………………………… iv 符號索引…………………………………………………………… vi 表圖索引…………………………………………………………… vii 第一章 緒論……………………………………………………… 1 1.1 研究動機……………………………………………… 1 1.2 文獻回顧……………………………………………… 2 第二章 實驗設備、儀器與方法………………………………… 6 2.1 實驗設備……………………………………………… 6 2.1.1 氣簾式生物安全櫃…………………………… 6 2.1.2 HEPA過濾器….……………………………… 7 2.1.3 抽氣機………………………………………… 7 2.1.4 煙霧微粒產生系統與微粒特性……………… 8 2.1.5 六氟化硫釋放器(SF6 ejector)…………… 10 2.1.6 採集盒………………………………………… 11 2.1.7 雷射光頁產生器…………………………… 11 2.1.8 數位相機……………………………………… 11 2.1.9 數位攝影機………………………………… 12 2.2 量測儀器……………………………………………… 12 2.2.1 文氏管流量計………………………………… 12 2.2.2 壓力轉換器…………………………………… 13 2.2.3 風速轉換器(velocity transducer)……… 13 2.2.4 浮子式流量計………………………………… 13 2.2.5 Malvern粒徑測量儀………………………… 14 2.2.6 雷射都卜勒測速儀…………………………… 15 2.2.7 三維移動平台機構…………………………… 15 2.2.8 MIRAN濃度測量儀…………………………… 16 2.3 實驗方法……………………………………………… 17 第三章 雷射煙霧流場可視化結果……………………………… 18 3.1 穩態流場特性與模態………………………………… 18 3.1.1 流場模態……………………………………… 18 3.1.2 特性區域……………………………………… 21 3.2 二維雷射都卜勒測速儀量測櫃內流場特性………… 22 3.2.1 嚴重內凹模態之櫃內流場特性……………… 23 3.2.2 輕微內凹模態之櫃內流場特性…………… 24 3.3 二維雷射都卜勒測速儀量測櫃內流場紊流強度…… 25 3.3.1 嚴重內凹模態之櫃內紊流強度分析……… 25 3.3.2 輕微內凹模態之櫃內紊流強度分析………… 26 第四章 第二級生物安全櫃測試規範與標準………………………27 4.1 美國國家標準NSF/ANSI 49-2004生物安全櫃性能測試方 法…………………………………………………………27 4.1.1 物理測試(Physical Tests)………………… 27 4.1.2 微生物測試(Biological Tests)…………… 29 4.2 以追蹤氣體測試法模擬NSF/ANSI 49-2004微生物測試 法…………………………………………………………35 第五章 以流場可視化法模擬NSF/ANSI 49-2004微生物測試法檢 驗的結果……………………………………………………40 5.1 人員防護測試………………………………………… 40 5.2 產品防護測試………………………………………… 42 5.3 交互感染防護測試…………………………………… 43 第六章 生物安全櫃性能與洩漏特性…………………………… 47 6.1 以追蹤氣體測試法模擬NSF/ANSI 49-2004微生物測試法檢 驗的結果…………………………………………………47 6.1.1 人員防護測…………………………………… 47 6.1.2 產品防護測試………………………………… 50 6.1.3 交互感染防護測試…………………………… 52 6.1.4 櫃內移動滴管測試…………………………… 55 6.1.5 櫃內移動燒杯測試…………………………… 56 6.2 以EN 14175-3:2003追蹤氣體測試法檢驗的結果…… 57 6.2.1 穩態追蹤氣體測試…………………………… 57 6.2.2 動態追蹤氣體測試…………………………… 59 第七章 櫃內壓力變化與安全診測……………………………… 66 7.1 各模態下之櫃內壓力變化………………………………66 7.1.1 於筆直模態下之櫃內壓力變化特性………… 67 7.1.2 於嚴重內凹模態下之櫃內壓力變化特性…… 67 7.1.3 於輕微內凹模態下之櫃內壓力變化特性…… 67 7.2 可能之應用…………………………………………… 68 第八章 結論與建議……………………………………………… 69 8.1 能源消耗…………………………………………………69 8.2 結論…………………………………………………… 69 8.3 建議………………………………………………………71 參考文獻…………………………………………………………… 72

    [1] CDC/NIH, Biosafety in Microbiological and Biomedical
    Laboratories, 4th edition, Centers for Disease Control/National Institutes of Health, US Government Printing Office, Washington, 1999.
    [2] NSF/ANSI, Standard No. 49 for Class II (Laminar Flow) Biosafety Cabinet, National Sanitation Foundation, Ann Arbor, Mich.2004.
    [3] 行政院勞工委員會,有機溶劑中毒預防規則,台北,1991。
    [4] 行政院勞工委員會,特定化學物質危害預防標準,台北,1991。
    [5] 內政部,鉛中毒預防規則,台北,1974。
    [6] 內政部,粉塵危害預防標準,台北,1981。
    [7] 行政院勞工委員會,勞工安全衛生組織管理及自動檢查辦法,台北,1993。
    [8] Numano, Y. (沼野雄志),局排設計教室,第三版,中央勞動災害防止協會,東京,1996。
    [9] ACGIH, Industrial Ventilation, A Manual of Recommended Practice, 24th ed. American Conference of Governmental Industrial Hygienist, Cincinnati, Ohio, 2001, pp. 108-109.
    [10] McDermott, H. J., Handbook of Ventilation for Contaminant Control, 2nd ed., Butterworth-Heinemann, Boston,Massachusetts, 1985.
    [11] Simons, C. G., “Specifying the correct biological safety cabinet,” ASHRAE Journal, Vol. 33, No. 8, 1991, pp. 31-34.
    [12] Stuart, D. G., Greenier T. J., Rumery R. A., and Eagleson, J. M., “Survey, use, and performance of biological safety cabinets,” American Industrial Hygiene Association Journal, Vol. 43, No. 4, 1982, pp. 265-270.
    [13] Stimpfel, T. M. and Gershey, E. L., “Design modifications of a class II biological safety cabinet and user guidelines for enhancing safety,” American Industrial Hygiene Association Journal, Vol. 52, No.1, 1991, pp. 1-5.
    [14] Clark, R. P., and Mullan, B. J., “Airflows in and around linear downflow ‘safety’ cabinets,” Journal of Applied Bacteriology, Vol. 45, No. 1, 1978, pp. 338-358.
    [15] Osborne, R., Durkin, T., Shannon, H., and Hughes, C., “Performance of open-fronted microbiological safety cabinets: value of operator protection tests during routine servicing,” Journal of Applied Microbiology, Vol. 86, No. 6, 1999, pp. 962-970.
    [16] Kruse, R. H., Puckett, W. H., Richardson, J. H., “Biological safety cabinetry,” Clinical Microbiological Reviews, Vol. 4 , No. 2, April, 1991, pp. 207-241.
    [17] Rake, B. W., “Influence of cross drafts on the performance of a biological safety cabinet,” Applied and Environmental Microbiology, Vol. 36, No. 2, 1978, pp. 278-283.
    [18] Clark, R. P., The Performance, Installation, Testing and Limitations of Microbiological Safety Cabinets, Occupational Hygiene Monograph No. 9, Science Reviews Ltd ed. Hughes, D. Northwood, Science Reviews Ltd.,Leeds, West Yorkshire, England, 1983.
    [19] 勞委會勞工安全衛生研究所,作業場所空氣有害物預估與控制研究-側風對外裝型氣罩捕集效果之探討,勞委會勞工安全衛生研究所研究報告,IOSH88-H103, 1999。
    [20] 勞委會勞工安全衛生研究所,外裝型氣罩控制風速與捕集能力探討,勞委會勞工安全衛生研究所研究報告,IOSH89-H104, 2000。
    [21] 勞委會勞工安全衛生研究所,氣罩凸緣對捕集效果相關性探討,勞委會勞工安全衛生研究所研究報告,IOSH90-H102, 2001。
    [22] 勞委會勞工安全衛生研究所,發散式危害源氣罩設計模式研究,勞委會勞工安全衛生研究所研究報告,IOSH91-H121, 2002。
    [23] 勞委會勞工安全衛生研究所,吹吸式氣罩設計與操作指引研究,勞委會勞工安全衛生研究所研究報告,IOSH92-H102, 2003。
    [24] Huang, R. F., Chen, J. L., Chen, Y. K., Chen, C. C., Yeh, W. Y., and Chen, C. W., “The capture envelope of a flanged circular hood in cross drafts,” AIHA Journal, Vol. 62, No. 2, 2001, pp. 199-207.
    [25] Huang, R. F., Sir, S. Y., Chen, Y. K., Yeh, W. Y., Chen, C. W., and Chen, C. C., “Capture envelopes of rectangular hoods in cross drafts,” AIHA Journal, Vol. 62, No. 10, 2001, pp. 563-572.
    [26] Huang, R. F., Liu, G. S., Chen, Y. K., Yeh, W. Y., Chen, C. W., and Chen, C. C., “Effects of flange size on dividing streamline of exterior hoods in cross drafts,” Journal of Occupational and Environmental Hygiene, Vol. 1, No. 5, 2004, pp. 283-288.
    [27] Huang, R. F., Liu, G. S., Lin, S. Y., Chen, Y. K., Wang, S. C., Peng, C. Y., Yeh, W. Y., Chen, C. W., and Chang, C. P., “Development and Characterization of a Wake-Controlled Exterior Hood,” Journal of Occupational and Environmental Hygiene, Vol. 1, No. 12, 2004, pp. 769-778.
    [28] Huang, R. F., Lin, S. Y., Jan, S. Y., Hsieh, R. H., Chen, Y. K., Chen, C. W., Yeh, W. Y., Chang, C. P., Shih, T. S., and Chen, C. C., “Aerodynamic Characteristics and Design Guidelines of Push-Pull Ventilation Systems,” Annals of Occupational Hygiene, Vol. 49, No. 1, 2005, pp. 1-15.
    [29] 行政院勞工委員會,有機溶劑中毒預防規則,台北,2003。
    [30] 行政院勞工委員會,特定化學物質危害預防標準,行政院勞工委員會,台北,2001。
    [31] 行政院勞工委員會,鉛中毒預防規則,行政院勞工委員會,台北,2002。
    [32] 行政院勞工委員會,粉塵危害預防標準,行政院勞工委員會,台北,2003。
    [33] 勞委會勞工安全衛生研究所,崗亭式氣罩設計規範研究,勞委會勞工安全衛生研究所研究報告,IOSH93-H101, 2004。
    [34] 勞委會勞工安全衛生研究所,崗亭式氣罩最佳化設計研究,勞委會勞工安全衛生研究所研究報告,IOSH94-H101, 2005。
    [35] Flagan, R. C. and Seinfeld, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, pp. 290-357.
    [36] Perry, A. E. and Steiner, T. R., “Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 1. Vortex formation processes,” Journal of Fluid Mechanics, Vol. 174, 1987, pp. 233-270.
    [37] BS, “Laboratory Fume Cupboards. Part 4. Method for determination of the containment value of a laboratory fume cupboard,” British Standards Institution, London, 1994.

    QR CODE