簡易檢索 / 詳目顯示

研究生: 梁家瑜
Chia-Yu Liang
論文名稱: 以β相聚偏氟乙烯共聚物及聚甲基丙烯酸甲酯作為介電層應用於有機薄膜電晶體之研究
The Study of Using β-phase PVDFTrFE/PMMA as Dielectric Layer in Organic Thin Film Transistors
指導教授: 何郡軒
Jinn-Hsuan Ho
戴龑
Yian Tai
口試委員: 李文亞
Wen-Ya Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 112
中文關鍵詞: 聚偏二氟乙烯共聚物介電層有機薄膜電晶體
外文關鍵詞: Poly(vinylidene fluoride-co-trifluoroethylene), Dielectric, Organic thin film transistor
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 致謝 III 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 原理簡介與文獻回顧 4 2.1 電晶體發展概況 4 2.2 有機半導體簡介 8 2.2.1 有機半導體材料 8 2.2.2 有機半導體傳導機制 10 2.3 薄膜電晶體概論 13 2.3.1 薄膜電晶體結構與原理 13 2.3.2薄膜電晶體重要參數 16 2.4 高介電材料於薄膜電晶體上的應用 21 2.4.1 介電材料基本介紹 21 2.4.2 PVDFTrFE材料基本介紹 24 第三章 有機元件製備與量測分析系統 27 3.1 儀器設備 27 3.2實驗藥品與器材 28 3.3實驗步驟 29 3.3.1 圖案化基板製備 29 3.3.2 有機薄膜電晶體元件製備 31 3.4 元件電性測量與分析 33 第四章 實驗結果與討論 41 4.1 不同退火溫度與程序對PVDFTrFE薄膜的影響 42 4.2 混合高低介電材料之電晶體元件 47 4.2.1 混合高低介電材料作為單一介電層之薄膜特性 49 4.2.2 不同退火溫度與製程對混合介電層之元件表現 53 4.3 雙介電層之電性表現 59 4.3.1 下介電層降解程度分析 60 4.3.2 不同退火溫度與方式對雙介電層之元件表現 61 4.3.3 不同介電層厚度對元件的影響 63 4.4 雙介電層於有機電晶體之討論 80 4.4.1 雙介電層不同厚度比例與元件表現之分析 80 4.4.2 遲滯效應分析 83 4.4.3 PVDFTrFE提升元件電性之機制 86 4.4.4 雙介電層元件穩定性分析 90 第五章 結論與未來展望 91 參考文獻 96

    1. Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature communications 2014, 5 (1), 1-9.
    2. Reese, C.; Roberts, M.; Ling, M.-m.; Bao, Z., Organic thin film transistors. Materials today 2004, 7 (9), 20-27.
    3. Park, J.-S.; Chae, H.; Chung, H. K.; Lee, S. I., Thin film encapsulation for flexible AM-OLED: a review. Semiconductor science and technology 2011, 26 (3), 034001.
    4. Sharma, S.; Jain, K. K.; Sharma, A., Solar cells: in research and applications—a review. Materials Sciences and Applications 2015, 6 (12), 1145.
    5. Klauk, H., Organic field effect transistor. Chem. Soc. Rev 2010, 39, 2643-2666.
    6. Nketia-Yawson, B.; Noh, Y.-Y., Organic thin film transistor with conjugated polymers for highly sensitive gas sensors. Macromolecular Research 2017, 25 (6), 489-495.
    7. Baude, P.; Ender, D.; Haase, M.; Kelley, T.; Muyres, D.; Theiss, S., Pentacene-based radio-frequency identification circuitry. Applied Physics Letters 2003, 82 (22), 3964-3966.
    8. Fiore, V.; Battiato, P.; Abdinia, S.; Jacobs, S.; Chartier, I.; Coppard, R.; Klink, G.; Cantatore, E.; Ragonese, E.; Palmisano, G., An integrated 13.56-MHz RFID tag in a printed organic complementary TFT technology on flexible substrate. IEEE Transactions on Circuits and Systems I: Regular Papers 2015, 62 (6), 1668-1677.
    9. Roy, D.; Gooh Pattader, P. S.; Bandyopadhyay, D.; Chakraborty, M.; Wang, C.-H.; Yang, Y.-W.; Mukherjee, M., Dipolar Alignment in a Ferroelectric Dielectric Layer of FeFETs to Boost Charge Mobility and Nonvolatile Memory. ACS Applied Electronic Materials 2020, 2 (10), 3187-3198.
    10. Lee, J. S.; Prabu, A. A.; Kim, K. J., Annealing effect upon chain orientation, crystalline morphology, and polarizability of ultra-thin P(VDF-TrFE) film for nonvolatile polymer memory device. Polymer 2010, 51 (26), 6319-6333.
    11. Zhu, H.; Yamamoto, S.; Matsui, J.; Miyashita, T.; Mitsuishi, M., Highly oriented poly(vinylidene fluoride-co-trifluoroethylene) ultrathin films with improved ferroelectricity. RSC Advances 2016, 6 (38), 32007-32012.
    12. Qian, J.; Jiang, S.; Wang, Q.; Yang, C.; Duan, Y.; Wang, H.; Guo, J.; Shi, Y.; Li, Y., Temperature dependence of piezo- and ferroelectricity in ultrathin P(VDF–TrFE) films. RSC Advances 2018, 8 (51), 29164-29171.
    13. Hafner, J.; Teuschel, M.; Schneider, M.; Schmid, U., Origin of the strong temperature effect on the piezoelectric response of the ferroelectric (co-)polymer P(VDF70-TrFE30). Polymer 2019, 170, 1-6.
    14. Shockley, W., The Theory of p‐n Junctions in Semiconductors and p‐n Junction Transistors. Bell System Technical Journal 1949, 28 (3), 435-489.
    15. Sze, S. M., Semiconductor devices: pioneering papers. World Scientific: 1991.
    16. Pope, M.; Kallmann, H.; Magnante, P., Electroluminescence in organic crystals. The Journal of Chemical Physics 1963, 38 (8), 2042-2043.
    17. Audenaert, M.; Gusman, G.; Deltour, R., Electrical conductivity of I 2-doped polyacetylene. Physical Review B 1981, 24 (12), 7380.
    18. Tsumura, A.; Koezuka, H.; Ando, T., Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters 1986, 49 (18), 1210-1212.
    19. Barbe, D.; Westgate, C., Surface state parameters of metal-free phthalocyanine single crystals. Journal of Physics and Chemistry of Solids 1970, 31 (12), 2679-2687.
    20. Wang, C. H.; Hsieh, C. Y.; Hwang, J. C., Flexible organic thin‐film transistors with silk fibroin as the gate dielectric. Advanced Materials 2011, 23 (14), 1630-1634.
    21. Petti, L.; Münzenrieder, N.; Vogt, C.; Faber, H.; Büthe, L.; Cantarella, G.; Bottacchi, F.; Anthopoulos, T. D.; Tröster, G., Metal oxide semiconductor thin-film transistors for flexible electronics. Applied Physics Reviews 2016, 3 (2), 021303.
    22. Kumar, B.; Kaushik, B. K.; Negi, Y., Perspectives and challenges for organic thin film transistors: Materials, devices, processes and applications. Journal of Materials Science: Materials in Electronics 2014, 25 (1), 1-30.
    23. Riera‐Galindo, S.; Leonardi, F.; Pfattner, R.; Mas‐Torrent, M., Organic semiconductor/polymer blend films for organic field‐effect transistors. Advanced Materials Technologies 2019, 4 (9), 1900104.
    24. Le Comber, P.; Spear, W., Electronic transport in amorphous silicon films. Physical Review Letters 1970, 25 (8), 509.
    25. Horowitz, G.; Delannoy, P., An analytical model for organic‐based thin‐film transistors. Journal of Applied Physics 1991, 70 (1), 469-475.
    26. Horowitz, G.; Hajlaoui, R.; Delannoy, P., Temperature dependence of the field-effect mobility of sexithiophene. Determination of the density of traps. Journal de Physique III 1995, 5 (4), 355-371.
    27. Brown, A.; Jarrett, C.; De Leeuw, D.; Matters, M., Field-effect transistors made from solution-processed organic semiconductors. Synthetic metals 1997, 88 (1), 37-55.
    28. Vissenberg, M.; Matters, M., Theory of the field-effect mobility in amorphous organic transistors. Physical Review B 1998, 57 (20), 12964.
    29. Milani, L.; Torricelli, F.; Kovacs-Vajna, Z. M.; Colalongo, L. In Comparison between mobility models in organic semiconductors, Proceedings of the International Conference on Organic Electronics (ICOE 2011), 2011; pp 54-55.
    30. Marinov, O.; Deen, M.; Jiménez-Tejada, J. A.; Chen, C., Variable-range hopping charge transport in organic thin-film transistors. Physics Reports 2020, 844, 1-105.
    31. Xu, Y.; Liu, C.; Khim, D.; Noh, Y.-Y., Development of high-performance printed organic field-effect transistors and integrated circuits. Physical Chemistry Chemical Physics 2015, 17 (40), 26553-26574.
    32. Nketia‐Yawson, B.; Noh, Y. Y., Recent progress on high‐capacitance polymer gate dielectrics for flexible low‐voltage transistors. Advanced Functional Materials 2018, 28 (42), 1802201.
    33. da Cunha, M. R. P.; Maciel, A. C.; Faria, R. M.; da Cunha, H. N., Differential capacitive response of poly (3-hexylthiophene) diodes and effects of air exposure. Synthetic Metals 2019, 253, 141-145.
    34. Wang, Z.; Nayak, P. K.; Caraveo‐Frescas, J. A.; Alshareef, H. N., Recent developments in p‐Type oxide semiconductor materials and devices. Advanced Materials 2016, 28 (20), 3831-3892.
    35. Xu, Y.; Li, Y.; Li, S.; Balestra, F.; Ghibaudo, G.; Li, W.; Lin, Y. F.; Sun, H.; Wan, J.; Wang, X., Precise extraction of charge carrier mobility for organic transistors. Advanced Functional Materials 2020, 30 (20), 1904508.
    36. Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T. J.; Facchetti, A., High-k gate dielectrics for emerging flexible and stretchable electronics. Chemical reviews 2018, 118 (11), 5690-5754.
    37. Benz, M.; Euler, W. B., Determination of the crystalline phases of poly (vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. Journal of applied polymer science 2003, 89 (4), 1093-1100.
    38. Zhu, H.; Fu, C.; Mitsuishi, M., Organic ferroelectric field‐effect transistor memories with poly (vinylidene fluoride) gate insulators and conjugated semiconductor channels: a review. Polymer International 2021, 70 (4), 404-413.
    39. Kepler, R. G.; Anderson, R., Ferroelectric polymers. Advances in physics 1992, 41 (1), 1-57.
    40. Salimi, A.; Yousefi, A., Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polymer Testing 2003, 22 (6), 699-704.
    41. Mohammadi, B.; Yousefi, A. A.; Bellah, S. M., Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polymer testing 2007, 26 (1), 42-50.
    42. El Mohajir, B.-E.; Heymans, N., Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer 2001, 42 (13), 5661-5667.
    43. Davis, G.; McKinney, J.; Broadhurst, M.; Roth, S., Electric‐field‐induced phase changes in poly (vinylidene fluoride). Journal of Applied Physics 1978, 49 (10), 4998-5002.
    44. Gregorio, R.; Ueno, E., Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride)(PVDF). Journal of materials science 1999, 34 (18), 4489-4500.
    45. Laudari, A.; Pickett, A.; Shahedipour‐Sandvik, F.; Hogan, K.; Anthony, J. E.; He, X.; Guha, S., Textured Poling of the Ferroelectric Dielectric Layer for Improved Organic Field‐Effect Transistors. Advanced Materials Interfaces 2019, 6 (4), 1801787.
    46. Yin, Z.; Tian, B.; Zhu, Q.; Duan, C., Characterization and application of PVDF and its copolymer films prepared by spin-coating and Langmuir–blodgett method. Polymers 2019, 11 (12), 2033.
    47. Chen, X.; Han, X.; Shen, Q. D., PVDF‐based ferroelectric polymers in modern flexible electronics. Advanced Electronic Materials 2017, 3 (5), 1600460.
    48. Martins, P.; Lopes, A.; Lanceros-Mendez, S., Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Progress in polymer science 2014, 39 (4), 683-706.
    49. Zhang, Y.; Wang, H.; Zhang, L.; Chen, X.; Guo, Y.; Sun, H.; Li, Y., Field-effect transistor memories based on ferroelectric polymers. Journal of Semiconductors 2017, 38 (11), 111001.
    50. Chen, S.; Yao, K.; Tay, F. E. H.; Chew, L. L. S., Comparative investigation of the structure and properties of ferroelectric poly (vinylidene fluoride) and poly (vinylidene fluoride–trifluoroethylene) thin films crystallized on substrates. Journal of applied polymer science 2010, 116 (6), 3331-3337.
    51. Li, H.; Wang, R.; Han, S. T.; Zhou, Y., Ferroelectric polymers for non‐volatile memory devices: a review. Polymer International 2020, 69 (6), 533-544.
    52. Mao, D.; Gnade, B. E.; Quevedo-Lopez, M. A., Ferroelectric properties and polarization switching kinetic of poly (vinylidene fluoride-trifluoroethylene) copolymer. Ferroelectrics-Physical Effects 2011, 78-100.
    53. Senanayak, S. P.; Guha, S.; Narayan, K., Polarization fluctuation dominated electrical transport processes of polymer-based ferroelectric field effect transistors. Physical Review B 2012, 85 (11), 115311.
    54. Xu, M.; Xiang, L.; Xu, T.; Wang, W.; Xie, W.; Zhou, D., Low-voltage operating flexible ferroelectric organic field-effect transistor nonvolatile memory with a vertical phase separation P(VDF-TrFE-CTFE)/PS dielectric. Applied Physics Letters 2017, 111 (18), 183302.
    55. Liu, J.; Jin, L.; Jiang, Z.; Liu, L.; Himanen, L.; Wei, J.; Zhang, N.; Wang, D.; Jia, C.-L., Understanding doped perovskite ferroelectrics with defective dipole model. The Journal of Chemical Physics 2018, 149 (24), 244122.
    56. Cho, J. H.; Lee, J.; Xia, Y.; Kim, B.; He, Y.; Renn, M. J.; Lodge, T. P.; Frisbie, C. D., Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nature materials 2008, 7 (11), 900-906.
    57. Lee, K. H.; Kang, M. S.; Zhang, S.; Gu, Y.; Lodge, T. P.; Frisbie, C. D., “Cut and stick” rubbery ion gels as high capacitance gate dielectrics. Advanced Materials 2012, 24 (32), 4457-4462.
    58. Nketia‐Yawson, B.; Tabi, G. D.; Jo, J. W.; Noh, Y. Y., Solid‐State Electrolyte Dielectrics Based on Exceptional High‐k P (VDF‐TrFE‐CTFE) Terpolymer for High‐Performance Field‐Effect Transistors. Advanced Materials Interfaces 2020, 7 (17), 2000842.
    59. Nketia-Yawson, B.; Tabi, G. D.; Noh, Y.-Y., Polymer electrolyte blend gate dielectrics for high-performance ultrathin organic transistors: toward favorable polymer blend miscibility and reliability. ACS applied materials & interfaces 2019, 11 (19), 17610-17616.
    60. Sun, M.; Lan, L.; Wang, L.; Peng, J.; Cao, Y., Synthesis of Novel Conjugated Polyelectrolytes for Organic Field‐Effect Transistors Gate Dielectric Materials. Macromolecular Chemistry and Physics 2008, 209 (24), 2504-2509.

    無法下載圖示 全文公開日期 2024/09/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE