簡易檢索 / 詳目顯示

研究生: 林先明
Shian-Ming Lin
論文名稱: 複合式光學元件微射壓成形之研究
Research on μ-Injection Compression Molding of Hybrid Optical Elements
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 楊申語
Sen-Yeu Yang
黃國政
none
修芳仲
Fang-Jung Shiou
陳亮光
Liang-Kuang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 154
中文關鍵詞: 微射出壓縮成形射出成形複合式光學元件微溝槽轉寫率
外文關鍵詞: Micro injection compression molding (μ-ICM), injection molding (IM), hybrid optic elements (HOE), transfer ratio of grooves (TRG)
相關次數: 點閱:195下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究為應用一可微調式之微射出壓縮技術,利用此技術成形複合式光學元件,並利用模穴內壓力感測裝置之壓力感測,搭配訊號擷取系統,以閉迴路方式控制微壓縮之動作,在微壓縮啟動機制上乃是利用模穴內壓力曲線之峰值壓力之百分比做為觸發控制,探討不同啟動時機點對複合式光學元件表面微結構轉寫率之影響。本研究並利用模流分析Moldflow MPI 5.0進行複合式光學元件之充填行為進行分析,並與射出成形之結果進行短射比對。在複合式光學元件製造部份本研究使用FANUC ROBOSHOT α15-ίA全電式射出成形機及Asahi Kasei 80NH PMMA塑料進行實驗,由實驗結果可得(1) 本研究成功利用壓力控制將複合式光學元件以微射出壓縮成形技術製造,(2) 在充填短射比對上,模流分析結果與實際射出充填結果相似,(3) 實驗結果顯示出在峰值壓力15%啟動微壓縮,可提高微結構轉寫率,其中在模具溫度90°C與融膠溫度250°C時,微結構轉寫率可達99%,(4) 在不同模仁材料比較上,STAVAX不鏽鋼電鍍無電解鎳,因硬度相較於無氧銅高,可以有較高的微結構轉寫率。本研究結果未來可應用於含有微結構之光學元件,以提高光學元件之光學性質。


This research conducted a novel micro injection compression molding (μ-ICM) process for fabrication of hybrid optical elements (HOEs). The micro compression motion is triggered by the percentage of peak filling pressure obtained by the data acquisition (DAQ) system. Experiments were implemented with different percentages of peak fill pressure, and the relationship between the trigger time and transfer ratio of the groove (TRG) were investigated. The Moldflow MPI software (Moldflow Co., USA) is used to simulate the filling and packing stages of HOEs. Comparison of short shot is preceded by simulation and experimentation. Results show that (1) the HOEs are fabricated successfully by the μ-ICM with a closed-loop pressure control, (2) the comparison of short shot is similar in simulation and experiment, (3) the TRG has been achieved as 99% when the trigger pressure is 15% of peak filling pressure with mold temperature 90°C and melt temperature 250°C, (4) the comparison of different mold insert materials show that the STAVAX with electroless plated Nickel (ELNi ) has better TRG than that of the oxygen-free copper (OFC) due to higher hardness of ELNi. Further research focuses on the μ-ICM of optical elements with micro structures to increase the optical performances.

摘 要 I Abstract II 目 錄 III 圖目錄 VII 表目錄 XIV 第一章 導論 1 1.1 研究背景 1 1.2 研究方法與目的 6 1.3 章節介紹 6 第二章 文獻回顧 8 2.1 射出壓縮成形相關文獻回顧 8 2.2 複合式光學元件相關文獻回顧 18 2.3 相關專利比較 21 2.4 文獻回顧總結 24 第三章 微射出壓縮成形 25 3.1 射出壓縮成形 25 3.2 微射出壓縮成形 28 3.3 不同微射出壓縮之比較 31 3.3.1 微壓縮之機制之比較 31 3.3.2 微壓縮控制方法之比較 31 3.3.3 模仁材料之比較 32 第四章 光學設計與射出成形模擬分析 38 4.1 鏡片設計 38 4.2 光學模擬 43 4.3 模流分析 47 4.3.1 充填流動分析 48 4.3.2 凝固層與壓力曲線分析 49 第五章 實驗設計與規劃 57 5.1 模具設計 57 5.2 實驗設備 64 5.2.1 射出成形與射壓成形系統 64 5.2.2 微射壓成形系統 65 5.2.3 感測控制系統 66 5.2.4 量測設備 67 5.2.5 其他實驗設備 69 5.3 實驗流程規劃 77 第六章 實驗結果與討論 82 6.1 模流分析結果與射出成形實驗之討論 82 6.1.1 短射實驗與成形視窗 82 6.1.2 模流分析與射出成形壓力曲線之比較 83 6.2 不同溫度之啟動時間點的探討 89 6.2.1融膠溫度(TM)230°C與模具溫度(Tm)50°C 89 6.2.2 融膠溫度(TM)250°C與模具溫度(Tm)90°C 90 6.3 凝固層與啟動時間點之關係 100 6.3.1 融膠溫度(TM)230°C與模具溫度(Tm)50°C 100 6.3.2 融膠溫度(TM)250°C與模具溫度(Tm)90°C 101 6.4 殘留應力之光彈量測 110 6.5 不同材質之模仁與鏡片之比較 114 6.6 光學成像結果 116 7.1 結論 119 7.2 建議 120 參考文獻 122 附錄A Delpet 80NH材料性質表 125 附錄B Piezomechanik壓電馬達規格 126 附錄C FANUC ROBOSHOT α15-ίA機台規格 127 附錄D KISTLER石英壓力感測器6157BB規格 128 附錄E IO tech DaqBoard/2000訊號擷取控制卡規格 129 附錄F 表面輪廓量測儀規格 130 附錄G μ-ICM模具BOM表 131 附錄H μ-ICM模具材料表 132 作者簡介 133

[1] Knappe, W. and Lampl, A., (1984). “Optimum Proccessing Conditions in the Injection/Compression Moulding of Thermoplastics”, Kunststoffe, 74(2), 7–9.
[2] Matsuda, Shunsuke, Mitani, Katsuaki, Yoda, Hironori and Nishizawa, Kesaji, (1985). “Apparatus for Injection Compression Molding”, United States Patent, 4519763.
[3] Klepek, G., (1987). “Moulds for Manufacturing Optical Lenses”, Kunststoffe, 77, 22–23.
[4] Friedrichs, B., Friesenbichler, W. and Gissing, K., (1990). “Injection Compression Moulding of Thin-Wall Thermoplastic Parts”, Kunststoffe, 80(5), 13.
[5] Yang, S.Y. and Ke, M.Z., (1995). “Influence of Processing on Quality of Injection Compression Molding Disks”, Polymer Engineering and Science, 35(15), 1206–1212.
[6] Yang, S.Y. and Lien, L., (1996). “Experimental Study on the Injection Compression Molding of Parts with Precision Contours”, Intern. Polymer Procession, XI(2), 188.
[7] Wang, T.J., (1997). “Numerical Simulation of Injection/Compression Molding”, CAE and Intelligent processing of Polymeric Materials, 79, 83–95.
[8] 陳永徵 (1998)“射出壓縮成型製程特性暨雙折射率差值模擬計算與量測",中原大學機械工程研究所博士論文。
[9] 彭信舒 (1999)“光學產品射壓成型製程特性之研究",中原大學機械工程研究所碩士論文。
[10] Chen, C.M., Young, W.B., (2000). “The Effects of Compression Pressure on Injection Compression Molding”, Intern. Polymer Processing, 15(2), 176.
[11] 陳宜正 (2001)“具補強肋之塑膠射出壓縮成型品表面凹痕與翹曲變形",國立雲林科技大學機械工程研究所碩士論文。
[12] 陳宗平 (2001)“微射出模溫控制系統及微結構轉寫能力探討",國立臺灣大學機械工程學系碩士論文。
[13] 林昆燁 (2002)“射出壓縮成型於楔型版之研究",長庚大學機械工程學系碩士論文。
[14] Yan, C., Nakao, M., Go, T., Matsumoto, K., Hatamura, Y., (2003). “Injection molding for microstructures controlling mold-core extrusion and cavity heat-flux”, Microsystem Technologies, 9, 188–191.
[15] Gotoh, Kiyohito and Ichioka, Hiromi, (2004). “Injection Compression Molding Method for Optically Molded Products”, United States Patent, 6705725.
[16] Young, Wen-Bin, (2005). “Effect of process parameters on injection compression molding of pickup lens”, Applied Mathematical Modelling, 29, 955–971.
[17] 高旭麒 (2006)“繞射光學元件微射壓成形之研究",國立台灣科技大學機械工程學系碩士論文。
[18] Swason, G. I., Veldkamp W. B., “Infrared applications of diffractive optical elements” Proc. SPIE, 22(1988), 885.
[19] Yao Jun, Cui Zheng, Gao Fuhua, Zhang Yixiao, Gao Feng, Du Jinglei, Su Jingqin, Guo Yongkang, “Design of hybrid micro optical elements with coded gray-tone mask”, Microelectronic Engineering, 57-58 (2001), 793-799.
[20] Min, Sung-Wook, Jung, Sungyong, Park, Jae-Hyeung, Lee, Byoungho, (2002). “Study for wide-viewing integral photography using an aspheric Fresnel-lens array”, Optical Engineering, 41(10), 2572–2576.
[21] 李彥廷 (2005)“繞射/折射複合透鏡最佳單元組件研究",國交通大學光電工程研究所碩士論文。
[22] 陳永坤 (2005) “雙面微結構之薄件射出成形研究”,國立台灣科技大學機械工程研究所碩士論文。
[23] Taniguchi, Yoshiya, Hirayama, Nobuyuki, Hara, Yoshiaki, (2000). “Method of Controlling A Compression Injection Molding Machine”, United States Patent, 6562264.
[24] Kao, Po-Sung, Chen, Shih-Chung, Chao, Sheng-Jui, (2004). “Pressure-Controlling Device for An Injection Mold”, United States Patent, 20040142057.

QR CODE