簡易檢索 / 詳目顯示

研究生: 王靜薇
Ching-wei Wang
論文名稱: 利用臭氧活化固定柚皮苷於基材表面
Immobilization of Naringin onto Chitosan Substrates by Using Ozone activation
指導教授: 何明樺
Ming-hua Ho
口試委員: 王孟菊
Meng-jiy Wang
曾婷芝
Ting-Chih Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 148
中文關鍵詞: 臭氧改質幾丁聚醣柚皮苷
外文關鍵詞: ozone treatment, chitosan, Naringin
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗將利用臭氧活化固定柚皮苷於幾丁聚醣表面,藉由臭氧之強氧化性,於劑材表面產生過氧化物並利用氧化還原的方式產生氧的自由基於材料表面,進而達到將柚皮苷固定於基材表面之目的,利用臭氧改質可以有效避免因交聯劑產生的細胞毒性。柚皮苷為天然黃酮類,是一種HMG-CoA之抑制劑,發現有治療骨質疏鬆之效果,且能有效的促進骨細胞之生長,但高濃度之柚皮苷會產生細胞毒性,利用臭氧活化固定柚皮苷,改善釋放初期之快速釋放會導致藥物於短時間內累積濃度過高,進而產生的細胞毒性之現象。
釋放實驗結果,經臭氧活化固定柚皮苷之薄膜浸泡於PBS中,能有效控制釋放速率及濃度。體外實驗,以吸附的方式固定柚皮苷,7F2細胞活性明顯下降,UMR活性雖未出現明顯抑制的現象,但皆出現抑制細胞延展的現象,對於7F2及UMR的ALPase表現明顯有抑制的現象產生。經臭氧改質之幾丁聚醣薄膜,因控制柚皮苷之釋放速率及濃度,皆能促進7F2與UMR活性,對於ALPase表現亦有明顯增加的增加,證明攜帶柚皮苷之幾丁聚醣薄膜具有誘導骨生成作用。


The ozone oxidation can easily produce peroxides with free radicals for the surface modification on biomaterials. This process would be highly efficient and without any toxicity from crosslinkers. In this research, naringin, a HMG-CoA reductase inhibitor which can promote bone formation, was immobilized onto chitosan film by using the ozone activation process. At first, chitosan films were treated by the ozone activation to produce peroxides for the following immobilization of naringin. The amounts of peroxides produced by ozone treatment were quantified and optimized by the iodide assay.
In the in vitro delivery, the chitosan substrate with immobilized naringin was immersed in PBS and released amounts of naringin were measured by UV. The results showed that the ozone treatment can decrease the releasing rate and final concentration of naringin. The culture of osteoblast-like cells and osteoblasts showed that cell activity and proliferation were promoted by the immobilized naringin on chitosan substrates without any cytotoxicity. The early osteoblastic differentiation, ALPase expression, would be also enhanced. The results in this research demonstrated that naringin was efficiently immobilized onto chitosan substrates with the ozone treatment.

摘要 1 Abstract II 致謝 III 目錄 V 圖目錄 X 表目錄 XIX 專有名詞及縮寫 XX 第一章 緒論 1 第二章 文獻回顧 3 2.1 組織工程 3 2.2 生醫材料 5 2.3 表面改質技術 6 2.3.1 表面改質技術介紹 6 2.3.2 臭氧改質 9 2.4 幾丁聚醣 13 2.4.1 幾丁聚醣於生醫材料應用 14 2.5 柚皮苷 16 2.5.1 柚皮苷之物理及化學性質 17 2.5.2 柚皮苷應用 18 2.5.3 柚皮苷對骨細胞之影響 23 2.6 骨母細胞分化標記 29 2.7 檢測材料成骨性質(osteo-conductivity)之細胞選擇 31 第三章 實驗材料與方法 33 3.1 實驗目的 33 3.2 實驗藥品 33 3.3 實驗儀器 35 3.4 實驗步驟 36 3.4.1 幾丁聚醣薄膜之製備 36 3.4.2 臭氧改質 36 3.4.3 過氧化物含量測定 37 3.4.4 柚皮苷固定 37 3.4.5 材料清洗 38 3.4.6 釋放實驗 38 3.5 體外細胞實驗 39 3.5.1 細胞來源 39 3.5.2 細胞培養 41 3.5.3 細胞冷凍保存 42 3.5.4 解凍培養 42 3.5.5 細胞計數 43 3.5.6 粒線體測定 45 3.4.7 鹼性磷酸酶測定 47 3.4.8 細胞蛋白質濃度測試實驗 48 第四章 實驗結果與討論 51 4.1 柚皮苷(Free naringin)對骨細胞之影響 52 4.1.1 粒線體活性測試(MTT assay) 52 4.1.2 鹼性磷酸酶測定(ALPase expression) 56 4.2 臭氧改質材料表面 61 4.2.1 碘離子測量材料表面過氧化物 61 4.2.2 臭氧改質最佳化 61 4.3 控制釋放 65 4.4細胞於固定柚皮苷之幾丁聚醣上的活性表現 77 4.4.1幾丁聚醣直接吸附柚皮苷對細胞活性之影響 77 4.4.1.1 類骨細胞(UMR-106) 77 4.4.1.2 骨母細胞(7F2) 84 4.4.2臭氧改質活化固定柚皮苷 89 4.4.2.1 類骨細胞(UMR-106) 89 4.4.2.2 骨母細胞(7F2) 98 4.5細胞於柚皮苷改質幾丁聚醣上的鹼性磷酸酶表現 111 4.5.1 細胞於直接吸附柚皮苷之幾丁聚醣薄膜上之ALPase表現 111 4.5.1.1 類骨細胞鹼性磷酸酶表現 111 4.5.1.2骨母細胞鹼性磷酸酶表現 115 4.5.2 細胞於臭氧活化固定柚皮苷之幾丁聚醣薄膜上鹼性磷酸酶表現 119 4.5.2.1 類骨細胞鹼性磷酸酶表現 119 4.5.2.2 骨母細胞鹼性磷酸酶表現 123 第五章 結論 127 文獻 129 附錄 142 附錄A 鹼性磷酸酶檢量線 142 附錄B 臭氧產生機不同電壓產生之臭氧濃度 144 附錄C 利用Image-J量測細胞面積 145

1. Li, Z., Ramay, H.R., Hauch, K.D., Xiao, D., and Zhang, M., Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 2005. 26(18): p. 3919-28.
2. Zhang, Y., Venugopal, J.R., El-Turki, A., Ramakrishna, S., Su, B., and Lim, C.T., Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 2008. 29(32): p. 4314-22.
3. Li, L., Zeng, Z., and Cai, G., Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1. Phytomedicine, 2011.
4. Peng, Z., Dai, K.R., Yan, S.G., Yan, W.Q., Chao, Z., Chen, D.Q., Bo, X., and Xu, Z.W., Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell. European Journal of Pharmacology, 2009. 607(1-3): p. 1-5.
5. Wong, R.W.K. and Rabie, A.B.M., Effect of naringin on bone cells. Journal of Orthopaedic Research, 2006. 24(11): p. 2045-50.
6. Wu, J.B., Fong, Y.C., Tsai, H., Chen, Y.F., Tsuzuki, M., and Tang, C.H., Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts. European Journal of Pharmacology, 2008. 588(2-3): p. 333-41.
7. Wong, R.W.-K. and Rabie, A.-B.M., Bone induction using hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors. Hong Kong Dental Journal, 2007. 4: p. 15-21.
8. Langer R. and Vacanti J. P., Tissue engineering. Science, 1993. 260: p. 920.
9. Hubbell J.A., Biomaterials in tissue engineering. Bio.Technol, 1995. 13: p. 565-75.
10. Lucas-Clerc C., Massart C., and Campion J.P., Long-term culture of human pancreatic islets in an extracellular matrix: morphological and metabolic effects. Mol. cell endocrinol, 1993. 94: p. 9-20.
11. Tamada Y. and Ikada Y., Fibroblast growth on polymer surfaces and biosynthesis of collagen. J Biomed Mater RES, 1994. 28(783-789).
12. Van Wachem P.B., Hogt AH., Beugeling T., Feijen J., Bantjes A., Detmers J.P., and Van Aken W.G., Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials, 1987. 8: p. 547-56.
13. Garbassi F., Morra M., and Occhiello E., Polymer surfaces. Chichester: Wiley, 1994.
14. Chan C.M., Polymer surface modification and characterization. . Munich, Germany: Hanser, 1994.
15. Guan, J., Gao, C., Feng, L., and Shen, J., Functionalizing of polyurethane surfaces by photografting with hydrophilic monomers. Journal of Applied Polymer Science, 2000. 77(11): p. 2505-12.
16. N.C. Lin., Acrylic acid Grafted onto Polypropylene Nonwoven Fabric Immobilized with γ-PGA and Chitosan for Wound Dressing.Chinese Culture University. 2006.
17. Kramer, P.W., Yeh, Y.S., and Yasuda, H., Low temperature plasma for the preparation of separation membranes. Journal of Membrane Science, 1989. 46(1): p. 1-28.
18. Wang, Y., Kim, J.-H., Choo, K.-H., Lee, Y.-S., and Lee, C.-H., Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science, 2000. 169(2): p. 269-76.
19. Tsai, C.C., Chang, Y., Sung, H.W., Hsu, J.C., and Chen, C.N., Effects of heparin immobilization on the surface characteristics of a biological tissue fixed with a naturally occurring crosslinking agent (genipin): an in vitro study. Biomaterials, 2001. 22(6): p. 523-33.
20. Dasgupta, S., Surface modification of polyolefins for hydrophilicity and bondability: Ozonization and grafting hydrophilic monomers on ozonized polyolefins. Journal of Applied Polymer Science, 1990. 41(1-2): p. 233-48.
21. Karlsson, J.O. and Gatenholm, P., Solid-supported wettable hydrogels prepared by ozone induced grafting. Polymer, 1996. 37(19): p. 4251-56.
22. Peeling, J., Jazzar, M.S., and Clark, D.T., An ESCA study of the surface ozonation of polystyrene film. Journal of Polymer Science: Polymer Chemistry Edition, 1982. 20(7): p. 1797-805.
23. Tu, C.Y., Liu, Y.L., Lee, K.R., and Lai, J.Y., Surface grafting polymerization and modification on poly(tetrafluoroethylene) films by means of ozone treatment. Polymer, 2005. 46(18): p. 6976-85.
24. Alsheyab, M.A. and Munoz, A.H., Comparative study of ozone and MnO2/O3 effects on the elimination of TOC and COD of raw water at the Valmayor station. Desalination, 2007. 207(1–3): p. 179-83.
25. Aharoni S.M., Prevorsek D.C., and Schmitt G.J., Eur. Pat. 012316. 1979.
26. Lung-Chyuan, C., Effects of factors and interacted factors on the optimal decolorization process of methyl orange by ozone. Water Research, 2000. 34(3): p. 974-82.
27. Yuan Y.L., Zhang J., Ai F., Yuan J., Zhou J., Shen J., and Lin S.C., Surface modification of SPEU films by ozone induced graft copolymerization to improve hemocompatibility colloids and surfaces b-biointerfaces, 2003. 29(4): p. 247-56.
28. Park J.C., Hwang Y.S., Lee J.E., Park K.D., Matsumura K., Hyon S.H., and Suh H., Type I atelocollagen grafting onto ozone-treated polyurethane films: Cell attachment, proliferation, and collagen synthesis Journal of Biomedical Materials Research, 2000. 52(4): p. 669-77.
29. 羅棠楡, 製備並分析具骨誘導性之臭氧改質聚乳酸多孔支架.台灣科技大學. 2010.
30. Fujimoto, K., Takebayashi, Y., Inoue, H., and Ikada, Y., Ozone-induced graft polymerization onto polymer surface. Journal of Polymer Science Part A: Polymer Chemistry, 1993. 31(4): p. 1035-43.
31. Hu, S.G., Jou, C.H., and Yang, M.C., Antibacterial and biodegradable properties of polyhydroxyalkanoates grafted with chitosan and chitooligosaccharides via ozone treatment. Journal of Applied Polymer Science, 2003. 88(12): p. 2797-803.
32. Moad, G. and Solomon, D.H., The chemistry of free radical polymerization. 1995: Pergamon.
33. Chuchin, A.Y., Free radical reactions of polyarylenealkylenes and their hydroperoxides. Review. Polymer Science U.S.S.R., 1979. 21(7): p. 1579-618.
34. O'Neill, T., Grafting of acrylic acid onto radiation-peroxidized polypropylene film in the presence of ferrous ion. Journal of Polymer Science Part A-1: Polymer Chemistry, 1972. 10(2): p. 569-80.
35. Liu, C. and Bai, R., Preparation of chitosan/cellulose acetate blend hollow fibers for adsorptive performance. Journal of Membrane Science, 2005. 267(1–2): p. 68-77.
36. Majeti N.V, R.K., A review of chitin and chitosan applications. Reactive and Functional Polymers, 2000. 46(1): p. 1-27.
37. Pasparakis, G. and Bouropoulos, N., Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. International Journal of Pharmaceutics, 2006. 323(1–2): p. 34-42.
38. Kim, I.Y., Seo, S.J., Moon, H.e., Yoo, M.K., Park, I.Y., Kim, B.C., and Cho, C.S., Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances, 2008. 26(1): p. 1-21.
39. Francis Suh, J.K. and Matthew, H.W.T., Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000. 21(24): p. 2589-98.
40. Ogino M., Ohuchi F., and Hench L.L., Compositional dependence of the formation of calcium phosphate films on bioglass. Biomater Artif Cells Artif Organs, 1990. 18(1): p. 1-24.
41. Chandy T. and Sharma C.P., Chitosan as a biomaterial. Biomater Artif Cell Artif Organ, 1990. 18: p. 1-24.
42. Riccardo A.A, M., Biochemical significance of exogenous chitins and chitosans in animals and patients. Carbohydrate Polymers, 1993. 20(1): p. 7-16.
43. Jia Z., Shen D., and Xu W., Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr. Res, 2001. 333: p. 1-6.
44. Tan S.C., Khor E., Tan T.K., and Wong S.M., The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination. Talanta, 1998. 45: p. 713-19.
45. Fereidoon S., Janak K., Vidana A., and Jeon Y.J., Food applications of chitin and chitosan. Trends in Food Science & Technology, 1999. 10: p. 37-51.
46. Mao, J., Zhao, L., de Yao, K., Shang, Q., Yang, G., and Cao, Y., Study of novel chitosan-gelatin artificial skin in vitro. Journal of Biomedical Materials Research Part A, 2003. 64A(2): p. 301-08.
47. Salati, A., Keshvari, H., Karkhaneh, A., and Taranejoo, S., Design and Fabrication of Artificial Skin: Chitosan and Gelatin Immobilization on Silicone by Poly Acrylic Acid Graft Using a Plasma Surface Modification Method. Journal of Macromolecular Science, Part B, 2011. 50(10): p. 1972-82.
48. Jayakumar, R., Prabaharan, M., Sudheesh Kumar, P.T., Nair, S.V., and Tamura, H., Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology Advances, 2011. 29(3): p. 322-37.
49. Gustafson, S.B., Fulkerson, P., Bildfell, R., Aguilera, L., and Hazzard, T.M., Chitosan Dressing Provides Hemostasis in Swine Femoral Arterial Injury Model. Prehospital Emergency Care, 2007. 11(2): p. 172-78.
50. Vongchan, P., Sajomsang, W., Subyen, D., and Kongtawelert, P., Anticoagulant activity of a sulfated chitosan. Carbohydrate Research, 2002. 337(13): p. 1239-42.
51. Genta, I., Costantini, M., Asti, A., Conti, B., and Montanari, L., Influence of glutaraldehyde on drug release and mucoadhesive properties of chitosan microspheres. Carbohydrate Polymers, 1998. 36(2–3): p. 81-88.
52. Şenel, S., İkinci, G., Kaş, S., Yousefi-Rad, A., Sargon, M.F., and Hıncal, A.A., Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. International Journal of Pharmaceutics, 2000. 193(2): p. 197-203.
53. Krajewska, B., Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme and Microbial Technology, 2004. 35(2–3): p. 126-39.
54. Gamage, A. and Shahidi, F., Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chemistry, 2007. 104(3): p. 989-96.
55. Jeong, J., Lee, B., Yoon, C., Kim, H., and Kim, C., Effects of Drynariae rhizoma on the proliferation of human bone cells and the immunomodulatory activity. Pharmacol Res, 2005. 51: p. 125-36.
56. Wong, R., Rabie, B., Bendeus, M., and Hagg, U., The effects of Rhizoma Curculiginis and Rhizoma Drynariae extracts on bones. Chinese Medicine, 2007. 2(1): p. 13.
57. Chen, L.L., Lei, L.H., Ding, P.H., Tang, Q., and Wu, Y.M., Osteogenic effect of Drynariae rhizoma extracts and Naringin on MC3T3-E1 cells and an induced rat alveolar bone resorption model. Archives of Oral Biology, 2011. 56(12): p. 1655-62.
58. Middleton JR E., Kandaswami C., and C. Theoharides T., The Effects of Plant Flavonoids on Mammalian Cells:Implications for Inflammation, Heart Disease,and Cancer. PHARMACOLOGICAL REVIEWS, 2000. 52: p. 673-751.
59. Harborne, J.B. and Williams, C.A., Advances in flavonoid research since 1992. Phytochemistry, 2000. 55(6): p. 481-504.
60. Jagetia, G.C. and Reddy, T.K., Alleviation of iron induced oxidative stress by the grape fruit flavanone naringin in vitro. Chemico-Biological Interactions, 2011. 190(2–3): p. 121-28.
61. Gutteridge, J.M.C. and Halliwell, B., Free Radicals and Antioxidants in the Year 2000: A Historical Look to the Future. Annals of the New York Academy of Sciences, 2000. 899(1): p. 136-47.
62. Wuguo, D., Xingwang, F., and Jilan, W., Flavonoids function as antioxidants: By scavenging reactive oxygen species or by chelating iron? Radiation Physics and Chemistry, 1997. 50(3): p. 271-76.
63. Jeon, S.M., Bok, S.H., Jang, M.K., Kim, Y.H., Nam, K.T., Jeong, T.S., Park, Y.B., and Choi, M.S., Comparison of antioxidant effects of naringin and probucol in cholesterol-fed rabbits. Clinica Chimica Acta, 2002. 317(1–2): p. 181-90.
64. Bok, S.-H., Shin, Y.W., Bae, K.-H., Jeong, T.-S., Kwon, Y.-K., Park, Y.B., and Choi, M.-S., Effects of naringin and lovastatin on plasma and hepatic lipids in high-fat and high-cholesterol fed rats. Nutrition Research, 2000. 20(7): p. 1007-15.
65. Kim, H.J., Oh, G.T., Park, Y.B., Lee, M.K., Seo, H.J., and Choi, M.S., Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor-knockout mice under cholesterol fed condition. Life Sciences, 2004. 74(13): p. 1621-34.
66. Jagetia G.C., Venkatesha V.A., and Reddy T.K., Naringin, a citrus flavonone, protects against radiation-induced chromosome damage in mouse bone marrow. Mutagenesis, 2003. 18: p. 337-43.
67. Jagetia, G.C. and Reddy, T.K., The grapefruit flavanone naringin protects against the radiation-induced genomic instability in the mice bone marrow: a micronucleus study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2002. 519(1–2): p. 37-48.
68. Attia S.M., Abatement by naringin of lomefloxacin-induced genomic instability in mice. Mutagenesis, 2008. 23: p. 515-21.
69. Russo, A., Acquaviva, R., Campisi, A., Sorrenti, V., Di Giacomo, C., Virgata, G., Barcellona, M.L., and Vanella, A., Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell Biology and Toxicology, 2000. 16(2): p. 91-98.
70. Park, S., Park, E., and Kim, D., Passive cutaneous anaphylaxis-inhibitory activity of flavanones from Citrus unshiu and Poncirus trifoliata. Planta Med., 2005. 71(1).
71. Tsui, V.W.K., Wong, R.W.K., and Rabie, A.B.M., The inhibitory effects of naringin on the growth of periodontal pathogens in vitro. Phytotherapy Research, 2008. 22(3): p. 401-06.
72. Guengerich, F.P., Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene. Chemical Research in Toxicology, 1990. 3(4): p. 363-71.
73. Bok, S.H., Shin, Y.W., Bae, K.H., Jeong, T.S., Kwon, Y.K., Park, Y.B., and Choi, M.S., Effects of naringin and lovastatin on plasma and hepatic lipids in high-fat and high-cholesterol fed rats. Nutrition Research, 2000. 20(7): p. 1007-15.
74. Jeon, S.-M., Park, Y.B., and Choi, M.-S., Antihypercholesterolemic property of naringin alters plasma and tissue lipids, cholesterol-regulating enzymes, fecal sterol and tissue morphology in rabbits. Clinical Nutrition, 2004. 23(5): p. 1025-34.
75. Le Marchand, L., Murphy, S.P., Hankin, J.H., Wilkens, L.R., and Kolonel, L.N., Intake of Flavonoids and Lung Cancer. Journal of the National Cancer Institute, 2000. 92(2): p. 154-60.
76. Jung, U.J., Lee, M.-K., Jeong, K.-S., and Choi, M.-S., The Hypoglycemic Effects of Hesperidin and Naringin Are Partly Mediated by Hepatic Glucose-Regulating Enzymes in C57BL/KsJ-db/db Mice. The Journal of Nutrition, 2004. 134(10): p. 2499-503.
77. Kanno, S.I., Shouji, A., Tomizawa, A., Hiura, T., Osanai, Y., Ujibe, M., Obara, Y., Nakahata, N., and Ishikawa, M., Inhibitory effect of naringin on lipopolysaccharide (LPS)-induced endotoxin shock in mice and nitric oxide production in RAW 264.7 macrophages. Life Sciences, 2006. 78(7): p. 673-81.
78. Pu, P., Gao, D.-M., Mohamed, S., Chen, J., Zhang, J., Zhou, X.-Y., Zhou, N.-J., Xie, J., and Jiang, H., Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet. Archives of Biochemistry and Biophysics, 2012. 518(1): p. 61-70.
79. Singh, D., Chander, V., and Chopra, K., Protective effect of naringin, a bioflavonoid on glycerol-induced acute renal failure in rat kidney. Toxicology, 2004. 201(1–3): p. 143-51.
80. Galati, E.M., Monforte, M.T., d’Aquino, A., Miceli, N., Di Mauro, D., and Sanogo, R., Effects of naringin on experimental ulcer in rats. Phytomedicine, 1998. 5(5): p. 361-66.
81. Habauzit, V., Sacco, S.M., Gil-Izquierdo, A., Trzeciakiewicz, A., Morand, C., Barron, D., Pinaud, S., Offord, E., and Horcajada, M.-N., Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone, 2011. 49(5): p. 1108-16.
82. Wang, E.A., Rosen, V., Cordes, P., Hewick, R.M., Kriz, M.J., Luxenberg, D.P., Sibley, B.S., and Wozney, J.M., Purification and characterization of other distinct bone-inducing factors. Proceedings of the National Academy of Sciences, 1988. 85(24): p. 9484-88.
83. Riley, E.H., Lane, J.M., Urist, M.R., Lyons, K.M., and Lieberman, J.R., Bone Morphogenetic Protein-2 CORR, 1996. 324: p. 39-46.
84. Katagiri, T., Akira, Y., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J.M., Atsuko, F.-S., and Suda, T., Bone Morphogenetic Protein-2 Converts the Differentiation Pathway of C2C12 Myoblasts into the Osteoblast Lineage Cell Biology, 1994. 127: p. 1756-66.
85. Boyle, W.J., Simonet, W.S., and Lacey, D.L., Osteoclast differentiation and activation. Nature, 2003. 423(6937): p. 337-42.
86. Ang, E.S.M., Yang, X., Chen, H., Liu, Q., Zheng, M.H., and Xu, J., Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-κB and ERK activation. FEBS Letters, 2011. 585(17): p. 2755-62.
87. Chen, L.-l., Lei, L.-h., Ding, P.-h., Tang, Q., and Wu, Y.-m., Osteogenic effect of Drynariae rhizoma extracts and Naringin on MC3T3-E1 cells and an induced rat alveolar bone resorption model. Archives of Oral Biology, 2011. 56(12): p. 1655-62.
88. Stein G.S., Lian J.B., Stein J.L., Van Wijnen A.J., and Montecino M., Transcriptional Control of Osteoblast Growth and Differentiation Physiological Reviews, 1996. 76(2): p. 593-617.
89. Declercq, H.A., Verbeeck, R.M.H., De Ridder, L.I.F.J.M., Schacht, E.H., and Cornelissen, M.J., Calcification as an indicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures. Biomaterials, 2005. 26(24): p. 4964-74.
90. Jalota, S., Bhaduri, S.B., and Tas, A.C., Osteoblast proliferation on neat and apatite-like calcium phosphate-coated titanium foam scaffolds. Materials Science and Engineering: C, 2007. 27(3): p. 432-40.
91. Chang, C.L., The Cell behavior and biomechanism on Surfaces with different Topography.NTUST. 2012.
92. Pioletti, D.P., Leoni, L., Genini, D., Takei, H., Du, P., and Corbeil, J., Gene expression analysis of osteoblastic cells contacted by orthopedic implant particles. Journal of Biomedical Materials Research, 2002. 61(3): p. 408-20.
93. Frew, J.E., Jones, P., and Scholes, G., Spectrophotometric determination of hydrogen peroxide and organic hydropheroxides at low concentrations in aqueous solution. Analytica Chimica Acta, 1983. 155: p. 139-50.
94. Allen, A.O., Hochanadel, C.J., Ghormley, J.A., and Davis, T.W., Decomposition of Water and Aqueous Solutions under Mixed Fast Neutron and γ-Radiation. The Journal of Physical Chemistry, 1952. 56(5): p. 575-86.
95. Ko, Y.G., Kim, Y.H., Park, K.D., Lee, H.J., Lee, W.K., Park, H.D., Kim, S.H., Lee, G.S., and Ahn, D.J., Immobilization of poly(ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation. Biomaterials, 2001. 22(15): p. 2115-23.
96. Brondino, C., Boutevin, B., Parisi, J.-P., and Schrynemackers, J., Adhesive properties onto galvanized steel plates of grafted poly(vinylidene fluoride) powders with phosphonated acrylates. Journal of Applied Polymer Science, 1999. 72(5): p. 611-20.
97. Seo, S., King, J.M., and Prinyawiwatkul, W., Simultaneous Depolymerization and Decolorization of Chitosan by Ozone Treatment. Journal of Food Science, 2007. 72(9): p. C522-C26.
98. Hillery, A.M., Lloyd, A.W., and Swarbrick, J., Drug Delivery and Targeting for Pharmacists and Pharmaceutical Scientisis. 2001, New York: Taylor and Francis.
99. 林宜美, 幾丁質摻合聚乳酸酯微粒於藥物釋放系統之研究.國立中央大學. 2002.
100. 游惠婷, 膠狀聚乳酸對牙齦母細胞毒性之研究.中山醫學院. 2001.

無法下載圖示 全文公開日期 2017/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE