簡易檢索 / 詳目顯示

研究生: 毛漢文
Han-Wen Mao
論文名稱: 可變阻抗控制應用於人與機械手臂握手策略之設計
Design of Human-Robot HandshakingStrategy with Variable Impedance Control
指導教授: 邱士軒
Shih-Hsuan Chiu
口試委員: 郭重顯
Chung-Hsien Kuo
林其禹
Chyi-Yeu Lin
蘇舜恭
Shuenn-Kung Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 80
中文關鍵詞: 阻抗控制適應性方法握手策略
外文關鍵詞: Impedance control, Adaptive method, Handshaking strategy
相關次數: 點閱:175下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要在設計與發展一套握手機器人系統,能夠與人產生互動並完成握手之動作。以阻抗控制為基礎,根據手臂終端所承受外力與相對應位移之關係,使機械手臂能順應使用者施加之外力,做動出位移的反應。當操作者不同時,施加外力的方向與大小亦是不同且無法預測。於是我們結合位置控制模式之阻抗控制與適應性方法,使控制系統能去適應不同的外力做出適當的位移反應。此種阻抗控制方法亦可命名為可變式阻抗控制,它可以藉由調整阻抗參數去得到好的效能。經由初步的實驗結果我們亦提出一些改變阻抗參數的策略,目的是希望能使握手感覺更接近人與人的握手動作。經由實際做動手臂與人握手的實驗與分析,可證實本文所設計之握手機器人系統是可行的。


In this thesis, we developed a handshaking robot system to realize human-robot handshaking motion. Position-based impedance control could provide the response of the system to external forces by utilizing a desired impedance relationship between the external force and displacement. Position-based impedance control combined with Adaptive method could adapt the unpredicted direction and magnitude of exerted force by different operators. This kind of method can be called variable impedance control as well. Variable impedance control could regulate impedance parameters for better performance. Through elementary experiments we proposed some strategies which helped the operator to change impedance parameters. The purpose of the strategies is to make the experimental handshaking feeling more realistic as handshaking feeling between humans. Finally the proposed system would be proved feasible by experimental results and analysis.

摘要I AbstractII 致謝III ContentsIV LIST OF FIGURESVII LIST OF TABLESX CHAPTER 1INTRODUCTION1 1.1 Foreword1 1.2 Background of research2 1.3 Purpose of research7 1.4 Structure of thesis9 CHAPTER 2CONTROL METHOD10 2.1 Position-based impedance control10 2.2 Adaptive method18 2.3 Variable impedance control22 2.4 Approximate second order system25 2.5 Handshaking strategy27 2.5.1 Strategy 1 - vary impedance parameter 27 2.5.2 Strategy 2 - assign parameters , and 29 2.5.3 Strategy 3 - increase to stop motion34 CHAPTER 3EXPERIMENTAL EQUIPMENT35 3.1 Six d.o.f robot arm platform35 3.2 Robotic kinematics36 3.2.1 Homogeneous transformation36 3.2.2 Denavit-Hartenberg convention41 3.2.3 Forward kinematics43 3.2.4 Inverse kinematics47 3.3 Actuator modules49 3.3.1 Motors49 3.3.2 Gear reductions51 3.4 Interface cards52 3.4.1 Motion control card52 3.4.2 Data acquisition card53 3.5 Sensors54 3.5.1 Force-torque sensor54 3.5.2 Optical sensor55 3.6 Power supply56 CHAPTER 4EXPERIMENTAL RESULTS57 4.1 Fundamental experiment with impedance control59 4.2 Analysis of handshaking motion between humans62 4.3 Strategy - 1 vary impedance parameter 64 4.4 Strategy - 2 assign parameters , and 68 4.5 Strategy - 3 Increase to stop motion73 CHAPTER 5CONCLUSION AND PROSPECTS75 REFERENCES76

[1]Raibert, M.H., Craig, J.J., “Hybrid Position/Force Control of Manipulators,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.102, pp. 126-133 (1981)
[2]Liu, G.J., Goldenberg, A.A., “Robust Hybrid Impedance Control of Robot manipulators,” Proceedings-IEEE Conference on Robotics and Automation, Sacramento, USA, pp. 287-292 (1991)
[3]Hogan, N., “Impedance Control: An Approach to Manipulation, Parts I-III,” ASME Journal of Dynamic Systems, Measurement, and Control, Vol.107, pp. 1-24 (1985)
[4]Heinrichs, B., Sepehri, N., Thornton-Trump, “Position-based impedance control of an industrial hydraulic manipulator,” Control System Magazine, Vol. 57, pp. 46-52 (1997)
[5]Singh, S. K., Popa, D. O., “An Analysis of Some Fundamental Problems in Adaptive Control of Force and Impedance Behavior: Theory and Experiments,” IEEE Robotics And Automation, Vol. 11, pp. 912-921 (1995)
[6]Hyun, C.C., Jong, H.P., “Stable bilateral teleoperation under a time delay using a robust impedance control,” Mechatronics, Vol. 15, pp. 611-625 (2005)
[7]Seul, J., Hsia, T.C., Robert G., Bonitz, “Force tracking impedance control of robot manipulators under unknown environment,” IEEE Control System Technology, Vol. 12, pp. 474-483 (2004)
[8]Seul J., Hsia, T.C., “Force Tracking Impedance Control of Robot Manipulators for Environment with Damping,” Proceedings-IEEE Conference on Industrial Electronics Society, Taipei, Taiwan, pp. 2742-2747 (2007)
[9]Lei Wang, Yongping Hao, Fei Wang, Hongyi Liu, “Experimental study of force control based on intelligent prediction algorithm in open architecture robot system,” Proceedings-IEEE Conference on Robotics and Biomimetics, Sanya, China, pp. 1675-1681 (2007)
[10]Asada, H., “Teaching and learning of compliance using neural nets: representation and generation of nonlinear compliance,” Proceedings-IEEE Conference on Robotics And Automation, pp. 1237-1244 (1990)
[11]Venkataraman, S.T., Gulati, S., Barhen, J., Toomarian, “A neural network based identification of environments models for compliant control of space robots,” IEEE Robotics And Automation, Vol. 9, pp.685-697 (1993)
[12]Seul J., Hsia, T.C., “Neural network techniques for robust force control of robot manipulators,” Proceedings-IEEE symposium on Intelligent Control, pp. 111-116 (1995)
[13]Seul J., Hsia, T.C., “Neural network impedance force control of robot manipulator,” IEEE Industrial Electronics, Vol. 45, pp. 451-461 (1998)
[14]Marques, S.J.C.,. Baptista, L.F., Costa, J.S., “Force control of robot manipulators with neural networks compensation: a comparative study,” Proceedings-IEEE symposium on Industrial Electronics, Guimaraes, Portugal, pp. 872-877 (1997)
[15]Yoshikawa, T., “Force control of robot manipulators,” Proceedings-IEEE Conference on Robotics And Automation, San Francisco, USA, pp. 220-226 (2000)
[16]Ikeura, R., Monden, H., Inooka, H., “Cooperative motion control of a robot and a human,” Proceedings-IEEE Conference on Robot and Human Communication, Roman, Italy, pp. 112-117 (1994)
[17]Tsumugiwa, T., Yokogawa, R., Hara, K., “Variable impedance control based on estimation of human arm stiffness for human-robot cooperative calligraphic task,” Proceedings-IEEE Conference on Robotics And Automation, Washington, USA, pp. 644-650 (2002)
[18]Duchaine, V., Clement, M., Gosselin, “General Model of Human-Robot Cooperation Using a Novel Velocity Based Variable Impedance Control,” Eurohaptics Conference on Virtual Environment and Teleoperator Systems, pp. 446-451 (2007)
[19]Tee, K.P., Burdet, E., Chew, C.M., Milner, T.E., “Investigating motor adaptation to stable and unstable tasks using haptic interfaces, EMG and fMRI,” SICE Annual Conference, pp. 591-595 (2003)
[20]Kasuga, T., Hashimoto, M., “Human-Robot Handshaking using Neural Oscillators,” Proceedings-IEEE Conference on Robotics And Automation, Barcelona, Spain, pp. 3802-3807 (2005)
[21]Jindai, M., Watanabe, T., “A handshake robot system based on a shake-motion leading model,” Proceedings-IEEE Conference on Intelligent Robotic And Systems, Nice, France, pp. 3330-3335 (2008)
[22]Yamato, Y., Jindai, M., Wtanabe, T., “Developement of A Shake-Motion Leading Model for Human-Robot Handshaking,” SICE Annual Conference, Japan (2008)
[23]Aseltine, J.A., Mancini, A.R., Sartune, C.W., “A Survey of Adaptive Control Systems,” IRE Transactions on Automatic Control, Vol. 3, pp. 102-108 (1958)
[24]Petros A., Ioannou, Jing, S., Robust Adaptive Control, PTR Prentice-Hall, NJ, pp. 144-245 (1996)
[25]Mark , W., Hutchinson, S.S., Vidyasagar, M., Robot Modeling And Control, John Wiley and Sons, NY, pp. 35-117 (2006)
[26]晉茂林,機器人學,五南圖書出版公司,台北,第235-254頁 (1999)

QR CODE