簡易檢索 / 詳目顯示

研究生: Minbale Admas Teshager
Minbale - Admas Teshager
論文名稱: Investigation of Surface Reactions on Positive Electrodes of Lithium Ion Batteries Using Infrared Spectroscopy
Investigation of Surface Reactions on Positive Electrodes of Lithium Ion Batteries Using Infrared Spectroscopy
指導教授: 林昇佃
Shawn D. Lin
口試委員: 黃炳照
Bing-Joe Hwang
王復民
Fu-Ming Wang
劉偉仁
Wei-Ren Liu
吳溪煌
She-huang Wu
潘金平
Jing-Pin Pan
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 126
中文關鍵詞: solid electrolyte interfacelithium ion batteryoxidation decompositionbenzimidazole derivative lithium saltin situ DRIFTSLi-rich cathode
外文關鍵詞: solid electrolyte interface, lithium ion battery, oxidation decomposition, benzimidazole derivative lithium salt, in situ DRIFTS, Li-rich cathode
相關次數: 點閱:321下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The solid electrolyte interface (SEI) formation process during the first charging/discharging of lithium ion battery consumes lithium ions permanently and results in an irreversible capacity. In this work, analysis of the SEI composition and formation mechanism in different electrolytes and electrodes at ambient and elevated temperature is performed using infrared spectroscopic technique as a main tool and other analysis techniques such as CV and EIS. SEI formation at ambient and elevated temperature analyzed by in situ DRIFTS system, confirms the formation of SEI species such as RCOOR, ROCO2Li, ROCOF, Li2CO3 and PFx were observed on LiCoO2 from 4.0 V to 4.5 V, whereas on LLNMO from 4.5 V to 5.0 V mainly from the decomposition of EC.
    Our experimental results suggest that oxidation decomposition up on delithiation is correlated with the intrinsic stability of the cathode materials beyond the above mention potentials thereby result in the surface reconstruction and increase reactivity. Using the new benzimidazole derivative lithium salt, the nature of SEI and formation mechanism is somewhat different from the commercial electrolyte system. SEI species such as pyrocarbonate (ROCO)2O, ROCO2Li, and Li2CO3 were observed. During the second cycle charging more decomposition products such as -COO- and CO2 were observed using the commercial electrolyte, whereas using the new electrolyte similar species with the room temperature were detected.
    At elevated temperature, in addition to species observed at ambient temperature more decomposition products such as -COO- and CO2 were also observed using the commercial electrolyte, whereas using the new electrolyte no new species was detected. Moreover, SEI species were observed at lower onset potential using the commercial electrolyte, whereas using the new electrolyte no onset potential difference was observed on species formation.
    In addition, surface coating of cathode materials has been widely investigated to improve the active interaction of the cathode surface and electrolyte. From in situ DRIFTS result, suppression of electrolyte decomposition and thin SEI formation was suggested on ZrO2 and Al2O3 coated high capacity Li-rich (LLNMO) cathode.


    The solid electrolyte interface (SEI) formation process during the first charging/discharging of lithium ion battery consumes lithium ions permanently and results in an irreversible capacity. In this work, analysis of the SEI composition and formation mechanism in different electrolytes and electrodes at ambient and elevated temperature is performed using infrared spectroscopic technique as a main tool and other analysis techniques such as CV and EIS. SEI formation at ambient and elevated temperature analyzed by in situ DRIFTS system, confirms the formation of SEI species such as RCOOR, ROCO2Li, ROCOF, Li2CO3 and PFx were observed on LiCoO2 from 4.0 V to 4.5 V, whereas on LLNMO from 4.5 V to 5.0 V mainly from the decomposition of EC.
    Our experimental results suggest that oxidation decomposition up on delithiation is correlated with the intrinsic stability of the cathode materials beyond the above mention potentials thereby result in the surface reconstruction and increase reactivity. Using the new benzimidazole derivative lithium salt, the nature of SEI and formation mechanism is somewhat different from the commercial electrolyte system. SEI species such as pyrocarbonate (ROCO)2O, ROCO2Li, and Li2CO3 were observed. During the second cycle charging more decomposition products such as -COO- and CO2 were observed using the commercial electrolyte, whereas using the new electrolyte similar species with the room temperature were detected.
    At elevated temperature, in addition to species observed at ambient temperature more decomposition products such as -COO- and CO2 were also observed using the commercial electrolyte, whereas using the new electrolyte no new species was detected. Moreover, SEI species were observed at lower onset potential using the commercial electrolyte, whereas using the new electrolyte no onset potential difference was observed on species formation.
    In addition, surface coating of cathode materials has been widely investigated to improve the active interaction of the cathode surface and electrolyte. From in situ DRIFTS result, suppression of electrolyte decomposition and thin SEI formation was suggested on ZrO2 and Al2O3 coated high capacity Li-rich (LLNMO) cathode.

    Abstract i Acknowledgments iii List of Figures viii List of Tables xii List of Schemes xiii List of Abbreviations xiv Chapter 1 Introduction 1 1.1. Lithium ion batteries 1 1.2. Components of Lithium Ion Battery 5 1.2.1 Anode Materials 5 1.2.2 Cathode Materials 6 1.2.3 Electrolytes 10 1.2.3.1 Carbonate Solvents 10 1.2.3.2 Lithium Salts 12 1.3. Solid Electrolyte Interface (SEI) in Lithium Ion Batteries 13 1.3.1. Solid Electrolyte Interface (SEI) on Cathodes 13 1.3.2. Surface Chemistry of Li-Rich cathodes 20 1.3.3. Techniques for the Analysis of SEI 22 1.4. Motivation and Scope of this Work 26 1.4.1. The Reason Why LIBs? 26 1.4.2. Issues in LIBs 26 1.4.3. Aims and Objectives of the Study 26 Chapter 2 Experimental Methods 28 2.1. Cyclic Voltammetry (CV) 28 2.2. Electrochemical Impedance Spectroscopy (EIS) 30 2.3. Battery Test 32 2.4. Fourier Transform Infrared Spectroscopy (FTIR) 33 2.5. Scanning Electron Microscope (SEM) 35 2.6. Material Preparations 36 Chapter 3 In-Situ DRIFTS Analysis of SEI Formation on LiCoO2 and Li1.2Ni0.2Mn0.6O2 Using Commercial Electrolyte (LiPF6/EC+DEC) 38 3.1. Introduction 38 3.2. Experimental Methods 39 3.3. Results and Discussion 40 3.3.1. CV and EIS Measurements 40 3.3.2. In Situ DRIFTS at OCV 43 3.3.3. In Situ DRIFTS During Electrochemical Cycling 45 3.3.4. Mechanism of SEI formation 54 3.4. Summary 60 Chapter 4 Anodic Stability of New Electrolyte Containing Cyano-Substituted Benzimidazole Derivative Lithium Salt 61 4.1. Introduction 61 4.2. Experimental 62 4.3. Results and Discussion 63 4.3.1. CV Measurements 63 4.3.2. In-Situ DRIFTS Spectra at Open Circuit Voltage (OCV) 67 4.3.3. In-Situ DRIFTS Spectra during Electrochemical Cycling 69 4.3.4. Morphology Analysis with SEM 76 4.3.5. Proposed Mechanism for SEI formation 77 4.4. Summary 80 Chapter 5 Analysis of SEI Formation at Elevated Temperature 82 5.1. Introduction 82 5.2. Experimental Methods 83 5.3. Results and Discussion 84 5.3.1. In-Situ DRIFTS Analysis Using LiPF6/EC+DEC Electrolyte 84 5.3.2. In-Situ DRIFTS Analysis Using New Electrolyte (Li[5-CNTFBI(BF3)2] /EC+DEC) 88 5.3.3. Morphology Analysis with SEM 94 5.4. Ex-Situ DRIFTS Characterization of Bulk Electrolyte 96 5.5. Summary 98 Chapter 6 Analysis of SEI Formation After Surface Modification of Li-Rich Cathode 99 6.1. Introduction 99 6.2. Experimental Methods 100 6.3. Results and Discussion 100 6.3.1. In situ DRIFTS Spectra at OCV 100 6.3.2. In situ DRIFTS Spectra During electrochemical Cycling 101 6.4. Summary 105 Chapter 7 General Conclusions and Recommendations 106 References 108 Appendices 121

    [1] P.V. Braun, J. Cho, J.H. Pikul, W.P. King, H. Zhang, Current Opinion in Solid State and Materials Science, 16 (2012) 186-198.
    [2] Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, K. Amine, Nat Mater, 8 (2009) 320-324.
    [3] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Materials Research Bulletin, 15 (1980) 783-789.
    [4] T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Electrochimica Acta, 38 (1993) 1159-1167.
    [5] J.B. Goodenough, K.-S. Park, Journal of the American Chemical Society, 135 (2013) 1167-1176.
    [6] B. Xu, D. Qian, Z. Wang, Y.S. Meng, Materials Science and Engineering: R: Reports, 73 (2012) 51-65.
    [7] R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Materials Science and Engineering: B, 192 (2015) 3-25.
    [8] H. Ibrahim, A. Ilinca, J. Perron, Renewable and Sustainable Energy Reviews, 12 (2008) 1221-1250.
    [9] D. Larcher, J.M. Tarascon, Nat Chem, 7 (2015) 19-29.
    [10] B. Scrosati, J. Garche, Journal of Power Sources, 195 (2010) 2419-2430.
    [11] M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, Journal of Power Sources, 195 (2010) 7904-7929.
    [12] J.W. Fergus, Journal of Power Sources, 195 (2010) 939-954.
    [13] A. Patil, V. Patil, D. Wook Shin, J.-W. Choi, D.-S. Paik, S.-J. Yoon, Materials Research Bulletin, 43 1913-1942.
    [14] H. Kim, E.-J. Lee, Y.-K. Sun, Materials Today, 17 (2014) 285-297.
    [15] B. Wang, B. Luo, X. Li, L. Zhi, Materials Today, 15 (2012) 544-552.
    [16] C.K. Chan, X.F. Zhang, Y. Cui, Nano Letters, 8 (2008) 307-309.
    [17] M.E. Stournara, V.B. Shenoy, Journal of Power Sources, 196 (2011) 5697-5703.
    [18] M.S. Whittingham, Progress in Solid State Chemistry, 12 (1978) 41-99.
    [19] G.G. Amatucci, J.M. Tarascon, L.C. Klein, Solid State Ionics, 83 (1996) 167-173.
    [20] H.S. Liu, Z.R. Zhang, Z.L. Gong, Y. Yang, Electrochemical and Solid-State Letters, 7 (2004) A190-A193.
    [21] Y.S. Lee, Y.K. Sun, K. Adachi, M. Yoshio, Electrochimica Acta, 48 (2003) 1031-1039.
    [22] M.S. Whittingham, Chemical Reviews, 104 (2004) 4271-4302.
    [23] M.M. Thackeray, S.-H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney, Journal of Materials Chemistry, 17 (2007) 3112-3125.
    [24] B.J. Hwang, Y.W. Tsai, C.H. Chen, R. Santhanam, Journal of Materials Chemistry, 13 (2003) 1962-1968.
    [25] J.H. Kim, C.W. Park, Y.K. Sun, Solid State Ionics, 164 (2003) 43-49.
    [26] M.M. Thackeray, P.J. Johnson, L.A. de Picciotto, P.G. Bruce, J.B. Goodenough, Materials Research Bulletin, 19 (1984) 179-187.
    [27] S. Mukerjee, T.R. Thurston, N.M. Jisrawi, X.Q. Yang, J. McBreen, M.L. Daroux, X.K. Xing, Journal of The Electrochemical Society, 145 (1998) 466-472.
    [28] M.S. Whittingham, T. Zawodzinski, Chemical Reviews, 104 (2004) 4243-4244.
    [29] A. Yamada, S.C. Chung, K. Hinokuma Journal of The Electrochemical Society, 148 (2001) A224-A229.
    [30] R. Mukherjee, R. Krishnan, T.-M. Lu, N. Koratkar, Nano Energy, 1 (2012) 518-533.
    [31] N. Yabuuchi, K. Yoshii, S.-T. Myung, I. Nakai, S. Komaba, Journal of the American Chemical Society, 133 (2011) 4404-4419.
    [32] M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D.R. Baer, J.-G. Zhang, N.D. Browning, J. Liu, C. Wang, ACS Nano, 7 (2013) 760-767.
    [33] M.N. Ates, S. Mukerjee, K.M. Abraham, Journal of The Electrochemical Society, 161 (2014) A355-A363.
    [34] J. Yan, X. Liu, B. Li, RSC Advances, 4 (2014) 63268-63284.
    [35] N.-S. Choi, J.-G. Han, S.-Y. Ha, I. Park, C.-K. Back, RSC Advances, 5 (2015) 2732-2748.
    [36] T. Kawamura, S. Okada, J.-i. Yamaki, Journal of Power Sources, 156 (2006) 547-554.
    [37] G.E. Blomgren, Journal of Power Sources, 81–82 (1999) 112-118.
    [38] L. Xing, W. Li, C. Wang, F. Gu, M. Xu, C. Tan, J. Yi, The Journal of Physical Chemistry B, 113 (2009) 16596-16602.
    [39] G.-C. Chung, H.-J. Kim, S.-H. Jun, M.-H. Kim, Electrochemistry Communications, 1 (1999) 493-496.
    [40] M.C. Smart, B.V. Ratnakumar, V.S. Ryan-Mowrey, S. Surampudi, G.K.S. Prakash, J. Hu, I. Cheung, Journal of Power Sources, 119–121 (2003) 359-367.
    [41] K. Xu, Chemical Reviews, 104 (2004) 4303-4418.
    [42] P.G. Balakrishnan, R. Ramesh, T. Prem Kumar, Journal of Power Sources, 155 (2006) 401-414.
    [43] K. Xu, Journal of The Electrochemical Society, 155 (2008) A733-A738.
    [44] Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh, P.C. Redfern, L.A. Curtiss, K. Amine, Energy & Environmental Science, 6 (2013) 1806-1810.
    [45] K. Xu, Chemical Reviews, 114 (2014) 11503-11618.
    [46] Y.T. Chern, J.L. Jeng, S.Y. Chen, A.S. Wei, B.J. Hwang, in, Google Patents, 2014.
    [47] W. Xu, C.A. Angell, Electrochemical and Solid-State Letters, 4 (2001) E1-E4.
    [48] J. Scheers, P. Johansson, P. Szczeciński, W. Wieczorek, M. Armand, P. Jacobsson, Journal of Power Sources, 195 (2010) 6081-6087.
    [49] A. von Cresce, K. Xu, Journal of The Electrochemical Society, 158 (2011) A337-A342.
    [50] K. Abe, Y. Ushigoe, H. Yoshitake, M. Yoshio, Journal of Power Sources, 153 (2006) 328-335.
    [51] D. Aurbach, B. Markovsky, M.D. Levi, E. Levi, A. Schechter, M. Moshkovich, Y. Cohen, Journal of Power Sources, 81–82 (1999) 95-111.
    [52] K. Kanamura, Journal of Power Sources, 81–82 (1999) 123-129.
    [53] L. Yang, T. Markmaitree, B.L. Lucht, Journal of Power Sources, 196 (2011) 2251-2254.
    [54] Y. Zhu, Y. Li, M. Bettge, D.P. Abraham, Electrochimica Acta, 110 (2013) 191-199.
    [55] H.J. Ploehn, P. Ramadass, R.E. White, Journal of The Electrochemical Society, 151 (2004) A456-A462.
    [56] D. Aurbach, B. Markovsky, A. Shechter, Y. Ein‐Eli, H. Cohen, Journal of The Electrochemical Society, 143 (1996) 3809-3820.
    [57] A. Du Pasquier, A. Blyr, P. Courjal, D. Larcher, G. Amatucci, B. Gérand, J.M. Tarascon, Journal of The Electrochemical Society, 146 (1999) 428-436.
    [58] D. Aurbach, Journal of Power Sources, 89 (2000) 206-218.
    [59] D. Ostrovskii, F. Ronci, B. Scrosati, P. Jacobsson, Journal of Power Sources, 103 (2001) 10-17.
    [60] D. Aurbach, K. Gamolsky, B. Markovsky, G. Salitra, Y. Gofer, U. Heider, R. Oesten, M. Schmidt, Journal of The Electrochemical Society, 147 (2000) 1322-1331.
    [61] D. Aurbach, M.L. Daroux, P.W. Faguy, E. Yeager, Journal of The Electrochemical Society, 134 (1987) 1611-1620.
    [62] M. Balasubramanian, H.S. Lee, X. Sun, X.Q. Yang, A.R. Moodenbaugh, J. McBreen, D.A. Fischer, Z. Fu, Electrochemical and Solid-State Letters, 5 (2002) A22-A25.
    [63] K.C. Möller, H.J. Santner, W. Kern, S. Yamaguchi, J.O. Besenhard, M. Winter, Journal of Power Sources, 119–121 (2003) 561-566.
    [64] T. Matsushita, K. Dokko, K. Kanamura, Journal of Power Sources, 146 (2005) 360-364.
    [65] E. Strauss, D. Golodnitsky, E. Peled, Electrochemical and Solid-State Letters, 2 (1999) 115-117.
    [66] L. Yang, B. Ravdel, B.L. Lucht, Electrochemical and Solid-State Letters, 13 (2010) A95-A97.
    [67] M. Moshkovich, M. Cojocaru, H.E. Gottlieb, D. Aurbach, Journal of Electroanalytical Chemistry, 497 (2001) 84-96.
    [68] L. Xing, O. Borodin, Physical Chemistry Chemical Physics, 14 (2012) 12838-12843.
    [69] L. Yu, H. Liu, Y. Wang, N. Kuwata, M. Osawa, J. Kawamura, S. Ye, Angewandte Chemie International Edition, 52 (2013) 5753-5756.
    [70] D. Aurbach, B. Markovsky, G. Salitra, E. Markevich, Y. Talyossef, M. Koltypin, L. Nazar, B. Ellis, D. Kovacheva, Journal of Power Sources, 165 (2007) 491-499.
    [71] A.V. Plakhotnyk, L. Ernst, R. Schmutzler, Journal of Fluorine Chemistry, 126 (2005) 27-31.
    [72] H. Lee, S. Choi, S. Choi, H.-J. Kim, Y. Choi, S. Yoon, J.-J. Cho, Electrochemistry Communications, 9 (2007) 801-806.
    [73] H. Bouayad, Z. Wang, N. Dupré, R. Dedryvère, D. Foix, S. Franger, J.F. Martin, L. Boutafa, S. Patoux, D. Gonbeau, D. Guyomard, The Journal of Physical Chemistry C, 118 (2014) 4634-4648.
    [74] S. Levasseur, M. Ménétrier, Y. Shao-Horn, L. Gautier, A. Audemer, G. Demazeau, A. Largeteau, C. Delmas, Chemistry of Materials, 15 (2003) 348-354.
    [75] D. Ensling, G. Cherkashinin, S. Schmid, S. Bhuvaneswari, A. Thissen, W. Jaegermann, Chemistry of Materials, 26 (2014) 3948-3956.
    [76] S.W. Lee, C. Carlton, M. Risch, Y. Surendranath, S. Chen, S. Furutsuki, A. Yamada, D.G. Nocera, Y. Shao-Horn, Journal of the American Chemical Society, 134 (2012) 16959-16962.
    [77] Z. Lu, H. Wang, D. Kong, K. Yan, P.-C. Hsu, G. Zheng, H. Yao, Z. Liang, X. Sun, Y. Cui, Nat Commun, 5 (2014).
    [78] J.B. Goodenough, Y. Kim, Chemistry of Materials, 22 (2010) 587-603.
    [79] C.S. Johnson, J.S. Kim, C. Lefief, N. Li, J.T. Vaughey, M.M. Thackeray, Electrochemistry Communications, 6 (2004) 1085-1091.
    [80] F. Amalraj, D. Kovacheva, M. Talianker, L. Zeiri, J. Grinblat, N. Leifer, G. Goobes, B. Markovsky, D. Aurbach, Journal of The Electrochemical Society, 157 (2010) A1121-A1130.
    [81] S. Tan, Z. Zhang, Y. Li, Y. Li, J. Zheng, Z. Zhou, Y. Yang, Journal of The Electrochemical Society, 160 (2013) A285-A292.
    [82] P. Oh, S. Myeong, W. Cho, M.-J. Lee, M. Ko, H.Y. Jeong, J. Cho, Nano Letters, 14 (2014) 5965-5972.
    [83] J. Zhang, J. Wang, J. Yang, Y. NuLi, Electrochimica Acta, 117 (2014) 99-104.
    [84] K. Xu, S.P. Ding, T.R. Jow, Journal of The Electrochemical Society, 146 (1999) 4172-4178.
    [85] S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Bardé, P. Novák, P.G. Bruce, Journal of the American Chemical Society, 133 (2011) 8040-8047.
    [86] J. Hong, H.-D. Lim, M. Lee, S.-W. Kim, H. Kim, S.-T. Oh, G.-C. Chung, K. Kang, Chemistry of Materials, 24 (2012) 2692-2697.
    [87] S. Hy, F. Felix, J. Rick, W.-N. Su, B.J. Hwang, Journal of the American Chemical Society, 136 (2014) 999-1007.
    [88] B.M. Meyer, N. Leifer, S. Sakamoto, S.G. Greenbaum, C.P. Grey, Electrochemical and Solid-State Letters, 8 (2005) A145-A148.
    [89] Y. Wang, X. Guo, S. Greenbaum, J. Liu, K. Amine, Electrochemical and Solid-State Letters, 4 (2001) A68-A70.
    [90] K.-i. Morigaki, A. Ohta, Journal of Power Sources, 76 (1998) 159-166.
    [91] Felix, J.-H. Cheng, S. Hy, J. Rick, F.-M. Wang, B.-J. Hwang, The Journal of Physical Chemistry C, 117 (2013) 22619-22626.
    [92] R. Sharabi, E. Markevich, V. Borgel, G. Salitra, D. Aurbach, G. Semrau, M.A. Schmidt, Electrochemical and Solid-State Letters, 13 (2010) A32-A35.
    [93] Y. Ikezawa, H. Nishi, Electrochimica Acta, 53 (2008) 3663-3669.
    [94] V. Baranchugov, E. Markevich, G. Salitra, D. Aurbach, G. Semrau, M.A. Schmidt, Journal of The Electrochemical Society, 155 (2008) A217-A227.
    [95] S. Chattopadhyay, A.L. Lipson, H.J. Karmel, J.D. Emery, T.T. Fister, P.A. Fenter, M.C. Hersam, M.J. Bedzyk, Chemistry of Materials, 24 (2012) 3038-3043.
    [96] R. Dedryvère, S. Laruelle, S. Grugeon, L. Gireaud, J.-M. Tarascon, D. Gonbeau, Journal of The Electrochemical Society, 152 (2005) A689-A696.
    [97] L. El Ouatani, R. Dedryvère, C. Siret, P. Biensan, S. Reynaud, P. Iratçabal, D. Gonbeau, Journal of The Electrochemical Society, 156 (2009) A103-A113.
    [98] G. Cherkashinin, K. Nikolowski, H. Ehrenberg, S. Jacke, L. Dimesso, W. Jaegermann, Physical Chemistry Chemical Physics, 14 (2012) 12321-12331.
    [99] A. Kominato, E. Yasukawa, N. Sato, T. Ijuuin, H. Asahina, S. Mori, Journal of Power Sources, 68 (1997) 471-475.
    [100] A.M. Andersson, K. Edström, Journal of The Electrochemical Society, 148 (2001) A1100-A1109.
    [101] M. Dollé, S. Grugeon, B. Beaudoin, L. Dupont, J.M. Tarascon, Journal of Power Sources, 97–98 (2001) 104-106.
    [102] M.C. Smart, B.V. Ratnakumar, S. Surampudi, Y. Wang, X. Zhang, S.G. Greenbaum, A. Hightower, C.C. Ahn, B. Fultz, Journal of The Electrochemical Society, 146 (1999) 3963-3969.
    [103] M. Inaba, Y. Kawatate, A. Funabiki, S.-K. Jeong, T. Abe, Z. Ogumi, Electrochimica Acta, 45 (1999) 99-105.
    [104] S.E. Sloop, J.K. Pugh, S. Wang, J.B. Kerr, K. Kinoshita, Electrochemical and Solid-State Letters, 4 (2001) A42-A44.
    [105] C.L. Campion, W. Li, B.L. Lucht, Journal of The Electrochemical Society, 152 (2005) A2327-A2334.
    [106] S. Wilken, M. Treskow, J. Scheers, P. Johansson, P. Jacobsson, RSC Advances, 3 (2013) 16359-16364.
    [107] A.M. Haregewoin, T.-D. Shie, S.D. Lin, B.-J. Hwang, F.-M. Wang, ECS Transactions, 53 (2013) 23-32.
    [108] A.M. Haregewoin, E.G. Leggesse, J.-C. Jiang, F.-M. Wang, B.-J. Hwang, S.D. Lin, Electrochimica Acta, 136 (2014) 274-285.
    [109] C.G. Zoski, Handbook of Electrochemistry, Elsevier, 2007.
    [110] K. Izutsu, Electrochemistry in Nonaqueous Solutions, Wiley, 2009.
    [111] D. Aurbach, M.D. Levi, E. Levi, H. Teller, B. Markovsky, G. Salitra, U. Heider, L. Heider, Journal of The Electrochemical Society, 145 (1998) 3024-3034.
    [112] M.D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurbach, U. Heider, L. Heider, Journal of The Electrochemical Society, 146 (1999) 1279-1289.
    [113] F. Nobili, F. Croce, B. Scrosati, R. Marassi, Chemistry of Materials, 13 (2001) 1642-1646.
    [114] Y.J. Kang, J.H. Kim, S.W. Lee, Y.K. Sun, Electrochimica Acta, 50 (2005) 4784-4791.
    [115] J. Zheng, X. Wu, Y. Yang, Electrochimica Acta, 105 (2013) 200-208.
    [116] R. Petibon, N.N. Sinha, J.C. Burns, C.P. Aiken, H. Ye, C.M. VanElzen, G. Jain, S. Trussler, J.R. Dahn, Journal of Power Sources, 251 (2014) 187-194.
    [117] C. Ho, I.D. Raistrick, R.A. Huggins, Journal of The Electrochemical Society, 127 (1980) 343-350.
    [118] J.R. Ferraro, Introductory Raman Spectroscopy, Elsevier Science, 2003.
    [119] P. Larkin, Chapter 2 - Basic Principles, in: P. Larkin (Ed.) Infrared and Raman Spectroscopy, Elsevier, Oxford, 2011, pp. 7-25.
    [120] P. Larkin, Chapter 6 - IR and Raman Spectra-Structure Correlations: Characteristic Group Frequencies, in: P. Larkin (Ed.) Infrared and Raman Spectroscopy, Elsevier, Oxford, 2011, pp. 73-115.
    [121] Vibrational spectroscopy of different classes and states of compounds, in: Infrared and Raman Spectroscopy, Wiley-VCH Verlag GmbH, 2007, pp. 189-410.
    [122] P. Larkin, Chapter 4 - Environmental Dependence of Vibrational Spectra, in: P. Larkin (Ed.) Infrared and Raman Spectroscopy, Elsevier, Oxford, 2011, pp. 55-62.
    [123] P. Larkin, Chapter 3 - Instrumentation and Sampling Methods, in: P. Larkin (Ed.) Infrared and Raman Spectroscopy, Elsevier, Oxford, 2011, pp. 27-54.
    [124] Q. Fan, C. Pu, E.S. Smotkin, Journal of The Electrochemical Society, 143 (1996) 3053-3057.
    [125] S. Morimine, S. Norimoto, T. Shimoaka, T. Hasegawa, Analytical Chemistry, 86 (2014) 4202-4208.
    [126] M.G.S.R. Thomas, P.G. Bruce, J.B. Goodenough, Journal of The Electrochemical Society, 132 (1985) 1521-1528.
    [127] S.-P. Kim, A.C.T.v. Duin, V.B. Shenoy, Journal of Power Sources, 196 (2011) 8590-8597.
    [128] M. Christophersen, J. Carstensen, S. Rönnebeck, C. Jäger, W. Jäger, H. Föll, Journal of The Electrochemical Society, 148 (2001) E267-E275.
    [129] M. Ue, M. Takeda, M. Takehara, S. Mori, Journal of The Electrochemical Society, 144 (1997) 2684-2688.
    [130] K. Kanamura, S. Toriyama, S. Shiraishi, Z.i. Takehara, Journal of The Electrochemical Society, 142 (1995) 1383-1389.
    [131] K.J. Carroll, D. Qian, C. Fell, S. Calvin, G.M. Veith, M. Chi, L. Baggetto, Y.S. Meng, Physical Chemistry Chemical Physics, 15 (2013) 11128-11138.
    [132] J.M. Zheng, Z.R. Zhang, X.B. Wu, Z.X. Dong, Z. Zhu, Y. Yang, Journal of The Electrochemical Society, 155 (2008) A775-A782.
    [133] J. Zheng, J. Xiao, M. Gu, P. Zuo, C. Wang, J.-G. Zhang, Journal of Power Sources, 250 (2014) 313-318.
    [134] A. Perea, K. Zaghib, D. Belanger, Journal of Materials Chemistry A, 3 (2015) 2776-2783.
    [135] Q.-C. Zhuang, T. Wei, L.-L. Du, Y.-L. Cui, L. Fang, S.-G. Sun, The Journal of Physical Chemistry C, 114 (2010) 8614-8621.
    [136] Y. Akita, M. Segawa, H. Munakata, K. Kanamura, Journal of Power Sources, 239 (2013) 175-180.
    [137] K. Hongyou, T. Hattori, Y. Nagai, T. Tanaka, H. Nii, K. Shoda, Journal of Power Sources, 243 (2013) 72-77.
    [138] N. Kumar, K. Leung, D.J. Siegel, Journal of The Electrochemical Society, 161 (2014) E3059-E3065.
    [139] A. Jarry, S.F. Lux, R. Kostecki, Meeting Abstracts, MA2014-01 (2014) 1062.
    [140] M. Matsui, K. Dokko, K. Kanamura, Journal of Power Sources, 177 (2008) 184-193.
    [141] O. Borodin, W. Behl, T.R. Jow, The Journal of Physical Chemistry C, 117 (2013) 8661-8682.
    [142] K. Kanamura, S. Toriyama, S. Shiraishi, M. Ohashi, Z.-i. Takehara, Journal of Electroanalytical Chemistry, 419 (1996) 77-84.
    [143] M. Matsui, K. Dokko, K. Kanamura, Journal of The Electrochemical Society, 157 (2010) A121-A129.
    [144] T. Eriksson, A.M. Andersson, A.G. Bishop, C. Gejke, T. Gustafsson, J.O. Thomas, Journal of The Electrochemical Society, 149 (2002) A69-A78.
    [145] F. Joho, P. Novák, Electrochimica Acta, 45 (2000) 3589-3599.
    [146] S.-W. Song, G.V. Zhuang, P.N. Ross, Journal of The Electrochemical Society, 151 (2004) A1162-A1167.
    [147] H. Koga, L. Croguennec, M. Ménétrier, P. Mannessiez, F. Weill, C. Delmas, S. Belin, The Journal of Physical Chemistry C, 118 (2014) 5700-5709.
    [148] X. Yu, Y. Lyu, L. Gu, H. Wu, S.-M. Bak, Y. Zhou, K. Amine, S.N. Ehrlich, H. Li, K.-W. Nam, X.-Q. Yang, Advanced Energy Materials, 4 (2014) n/a-n/a.
    [149] R. Imhof, P. Novák, Journal of The Electrochemical Society, 146 (1999) 1702-1706.
    [150] X. Zhang, J.K. Pugh, P.N. Ross, Journal of The Electrochemical Society, 148 (2001) E183-E188.
    [151] A.D. Robertson, P.G. Bruce, Chemical Communications, (2002) 2790-2791.
    [152] M. Sathiya, G. Rousse, K. Ramesha, C.P. Laisa, H. Vezin, M.T. Sougrati, M.L. Doublet, D. Foix, D. Gonbeau, W. Walker, A.S. Prakash, M. Ben Hassine, L. Dupont, J.M. Tarascon, Nat Mater, 12 (2013) 827-835.
    [153] J. Scheers, D.-H. Lim, J.-K. Kim, E. Paillard, W.A. Henderson, P. Johansson, J.-H. Ahn, P. Jacobsson, Journal of Power Sources, 251 (2014) 451-458.
    [154] Z. Wang, C. Wu, L. Liu, F. Wu, L. Chen, X. Huang, Journal of The Electrochemical Society, 149 (2002) A466-A471.
    [155] K. Kanamura, T. Umegaki, M. Ohashi, S. Toriyama, S. Shiraishi, Z.-i. Takehara, Electrochimica Acta, 47 (2001) 433-439.
    [156] D. Ostrovskii, F. Ronci, B. Scrosati, P. Jacobsson, Journal of Power Sources, 94 (2001) 183-188.
    [157] L. Croguennec, C. Pouillerie, C. Delmas, Journal of The Electrochemical Society, 147 (2000) 1314-1321.
    [158] M. Kerlau, M. Marcinek, V. Srinivasan, R.M. Kostecki, Electrochimica Acta, 52 (2007) 5422-5429.
    [159] S.F. Lux, J. Chevalier, I.T. Lucas, R. Kostecki, ECS Electrochemistry Letters, 2 (2013) A121-A123.
    [160] M.D. Levi, E. Markevich, C. Wang, M. Koltypin, D. Aurbach, Journal of The Electrochemical Society, 151 (2004) A848-A856.
    [161] Q. Wang, J. Sun, X. Yao, C. Chen, Thermochimica Acta, 437 (2005) 12-16.
    [162] D.P. Abraham, R.D. Twesten, M. Balasubramanian, J. Kropf, D. Fischer, J. McBreen, I. Petrov, K. Amine, Journal of The Electrochemical Society, 150 (2003) A1450-A1456.
    [163] P. Arora, R.E. White, M. Doyle, Journal of The Electrochemical Society, 145 (1998) 3647-3667.
    [164] W. Li, B.L. Lucht, Journal of The Electrochemical Society, 153 (2006) A1617-A1625.
    [165] Y. Okamoto, Journal of The Electrochemical Society, 160 (2013) A404-A409.
    [166] H. Yang, G.V. Zhuang, P.N. Ross Jr, Journal of Power Sources, 161 (2006) 573-579.
    [167] T. Eriksson, A.M. Andersson, C. Gejke, T. Gustafsson, J.O. Thomas, Langmuir, 18 (2002) 3609-3619.
    [168] S.E. Sloop, J.B. Kerr, K. Kinoshita, Journal of Power Sources, 119–121 (2003) 330-337.
    [169] J. Zheng, W. Shi, M. Gu, J. Xiao, P. Zuo, C. Wang, J.-G. Zhang, Journal of The Electrochemical Society, 160 (2013) A2212-A2219.
    [170] A. Boulineau, L. Croguennec, C. Delmas, F. Weill, Solid State Ionics, 180 (2010) 1652-1659.
    [171] J. Lin, D. Mu, Y. Jin, B. Wu, Y. Ma, F. Wu, Journal of Power Sources, 230 (2013) 76-80.
    [172] Z. Chen, J.R. Dahn, Electrochemical and Solid-State Letters, 5 (2002) A213-A216.
    [173] W.-K. Kim, D.-W. Han, W.-H. Ryu, S.-J. Lim, H.-S. Kwon, Electrochimica Acta, 71 (2012) 17-21.
    [174] G. Singh, R. Thomas, A. Kumar, R.S. Katiyar, A. Manivannan, Journal of The Electrochemical Society, 159 (2012) A470-A478.
    [175] J. Zhai, M. Zhao, D. Wang, Y. Qiao, Journal of Alloys and Compounds, 502 (2010) 401-406.
    [176] H.-H. Chang, C.-C. Chang, C.-Y. Su, H.-C. Wu, M.-H. Yang, N.-L. Wu, Journal of Power Sources, 185 (2008) 466-472.
    [177] Z. Wang, E. Liu, L. Guo, C. Shi, C. He, J. Li, N. Zhao, Surface and Coatings Technology, 235 (2013) 570-576.
    [178] G.G. Amatucci, N. Pereira, T. Zheng, J.-M. Tarascon, Journal of The Electrochemical Society, 148 (2001) A171-A182.

    QR CODE