簡易檢索 / 詳目顯示

研究生: 徐證傑
Jheng-Jie Syu
論文名稱: 最佳化鋰離子電池多階段定電壓充電法
Optimal Multi-Stage Constant- Voltage Charging Method for Li-ion Batteries
指導教授: 羅一峰
Yi-Feng Luo
劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
鄧人豪
Jen-Hao Teng
羅一峰
Yi-Feng Luo
陳冠炷
Guan-Jhu Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 122
中文關鍵詞: 鋰離子電池粒子群演算法多階段定電流充電法電池健康狀態
外文關鍵詞: lithium-ion battery, particle swarm optimization, multi-stage constant current charging method, battery health state
相關次數: 點閱:690下載:34
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一種基於電池剩餘容量為充電限制條件之最佳化五階段定電壓充電法,隨著每一階段電池內電壓與端電壓之間的壓差變小,充電電流也會隨之降低,藉以減少電池因極化反應產生鋰枝晶之現象,減緩電池老化速率。
    所提之方法僅需使用電池等效電路模型以及庫倫積分法即可實現。本研究以電池剩餘容量作為每階段充電電壓轉態條件並使用粒子群演算法搜尋最佳充電參數,目標為同時降低充電時間以及減少充電損失,所提技術於快速充電的情況下能避免電池溫升過高導致電池壽命降低之風險。本文所提出之充電策略經實驗驗證,與相同平均電流之CC-CV充電法相比,電池容量由0 %充至80 %所需之充電時間可改善4.1%,可用容量百分比最多可改善1.88 %,循環壽命改善了74 %,並且於電池健康狀態皆為94 %的條件下,能延長150次之充電循環壽命。


    In this thesis, an optimized five-stage constant voltage charging method based on the battery's remaining capacity as the charging limit condition is proposed. As the voltage difference between the battery's internal voltage and terminal voltage decreases in each stage, the charging current also decreases, reducing the occurrence of lithium dendrite formation due to polarization reactions and slowing down the battery aging rate. The proposed method can be implemented using a battery equivalent circuit model and Coulomb counting method. The remaining capacity of the battery is used as the transition condition for each stage of voltage during charging, and particle swarm optimization is employed to search for the optimal charging parameters. The objective is to reduce charging time and minimize charging losses. The proposed technique mitigates the risk of excessive battery temperature rise, which can lead to reduced battery life during fast charging.
    The proposed charging strategy was validated through experiments. Compared to the CC-CV charging method with the same average current, the proposed method improved the charging time required to charge the battery from 0% to 80% by 4.1%. The available capacity percentage was improved by up to 1.88%, and the cycle life was enhanced by 74%. Under a battery state of health of 94%, the proposed method extended the charging cycle life by 150 cycles.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 1 1.3 研究動機與目標 4 1.4 論文大綱 5 第二章 鋰離子電池與充電技術介紹 6 2.1 電池相關名詞介紹 6 2.2 鋰離子電池構造及電化學反應介紹 9 2.2.1 鋰離子電池構造 9 2.2.2 鋰電池電化學反應 10 2.3 鋰電池的潛在危機 11 2.4 鋰電池充電技術介紹 12 2.4.1 定電壓充電法[36] 13 2.4.2 定電流充電法[36] 13 2.4.3 定電流-定電壓充電法[36] 14 2.4.4 定電流-定電壓充電法之衍生型 14 2.4.5 脈衝電流充電法[14-18] 16 2.4.6 弦波電流充電法[19] 19 2.4.7 多階段定電流充電法[20-31] 20 2.4.8 MaxLifeTM充電技術[32-35] 21 2.4.9 多階段定電壓充電法 22 第三章 最佳化充電演算法之介紹 23 3.1 鋰離子電池等效電路模型 23 3.1.1 理想電池等效模型 23 3.1.2 線性電池等效模型 24 3.1.3 戴維寧等效電池模型 24 3.2 鋰離子電池之交流阻抗分析 25 3.2.1 交流阻抗分析實驗流程 26 3.2.2 交流阻抗分析之實驗規劃 27 3.2.3 交流阻抗之資料分析 29 3.3 基於SOC之最佳化多階段定電壓充電演算法之實現 39 3.3.1 目標函數之適應值評估 39 3.3.2 粒子群演算法 43 3.3.3 電池等效模型於粒子群演算法之應用 46 第四章 多階段定電壓充電法之充電機硬體實現 52 4.1 電路架構介紹 53 4.2 數位PI控制器之介紹 57 4.3 電路元件設計 58 4.4 韌體架構 60 4.4.1 程式設計流程介紹 61 第五章 模擬與實驗結果 62 5.1 最佳化多階段定電壓充電法模擬結果 62 5.2 實測環境 69 5.3 實測結果 70 5.3.1 不同MSCV充電案例之比較 70 5.3.2 不同充電電流之CC-CV充電法 74 5.3.3 循環壽命 84 5.4 電路實測結果 94 第六章 結論與未來展望 96 6.1 結論 96 6.2 未來展望 97 參考文獻 98

    [1]Z. Guo, B. Y. Liaw, X. Qiu, L. Gao and C. Zhang, “Optimal Charg- ing Method for Lithium Ion Batteries Using a Universal Voltage Protocol Accommodating Aging,” Journal of Power Sources, vol. 274, pp. 957–964, 2015.
    [2]M. Keyser et al., “Enabling Fast Charging - Battery Thermal Considerations,” Journal of Power Sources, vol. 367, pp. 228-236, Jul. 2017.
    [3]A. Meintz et al., “Enabling Fast Charging-Vehicle Considerations,”
    Journal of Power Sources, vol. 367, pp. 216-227, Jul. 2017.
    [4]T. Waldmann, B.-I. Hogg and M. Wohlfahrt-Mehrens, “Li Plating as Unwanted Side Reaction in Commercial Li-Ion Cells - A review,” Journal of Power Sources, vol. 384, pp. 107-124, Mar. 2018.
    [5]Y. Parvini, A. Vahidi and S. A. Fayazi, “Heuristic versus Optimal Charging of Supercapacitors, Lithium-Ion, and Lead-Acid Batteries: An Efficiency Point of View,” IEEE Transactions on Control Systems Technology, vol. 26, no. 1, pp. 167-180, Jan. 2018.
    [6]J. M. Amanor-Boadu, M. A. Abouzied and E. Sánchez-Sinencio, “An Efficient and Fast Li-Ion Battery Charging System Using Energy Harvesting or Conventional Sources,” IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 7383-7394, Sep. 2018.
    [7]K. Liu, K. Li, Z. Yang, C. Zhang and J. Deng, “An Advanced Lithium-Ion Battery Optimal Charging Strategy based on a Coupled Thermoelectric Model,” Electrochimica Acta, vol. 225, pp. 330-344, Jan.2017.
    [8]A. B. Khan and W. Choi, “Optimal Charge Pattern for the High Performance Multistage Constant Current Charge Method for the Li-Ion Batteries,” IEEE Transactions on Energy Conversion, vol. 33, no. 3, pp. 1132-1140, Sep. 2018.
    [9]M. R. Jannesar, A. Sedighi, M. Savaghebi and J. M. Guerrero, “Optimal Placement, Sizing, and Daily Charge/Discharge of Battery Energy Storage in Low Voltage Distribution Network with High Photovoltaic Penetration,” Applied Energy, vol. 226, pp. 957-966, Jun. 2018.
    [10]L. R. Chen, R. C. Hsu and C. S. Liu, “A Design of a Grey-Predicted Li-Ion Battery Charge System,” IEEE Transactions on Industrial Electronics, 2008.
    [11]G.C. Hsieh, L.R. Chen and K. S. Huang, “Fuzzy-Controlled Li-Ion Battery Charge System with Active State of Charge Controller,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 3, June 2001.
    [12]P. H. L. Notten, J. H. G. Op het Veld and J. R. G. van Beek, “Boost Charging Li-Ion Batteries: A Challenging New Charging Concept,” Journal of power Source, Vol. 145, No. 1, July 2005, pp. 89-94.
    [13]Liang-Rui Chen, “PLL-based Battery Charge Circuit Topology,” IEEE Transactions on Industrial Electronics, vol. 48, no. 3, June 2001.
    [14]X. Huang, W. Liu, A. B. Acharya, J. Meng, R. Teodorescu and D. -I. Stroe, “Effect of Pulsed Current on Charging Performance of Lithium-Ion Batteries,” IEEE Transactions on Industrial Electronics, Vol. 69, PP. 10144 – 10153, Oct. 2022.
    [15]J. Amanor-Boadu, A. Guiseppi-Elie and E. S´anchez-Sinencio, “The Impact of Pulse Charging Parameters on the Life Cycle of Lithium-Ion Polymer Batteries,” Energies, vol. 11, no. 8, p. 2162, Aug. 2018.
    [16]P. Keil and A. Jossen, “Charging Protocols for Lithium-Ion Batteries and Their Impact on Cycle Life - an Experimental Study with Different 18650 High Power Cells,” Journal of Power Sources, vol. 6, pp. 125–141, May. 2016.
    [17]J. Li, E. Murphy, J. Winnick and P. A. Kohl, “The Effects of Pulse Charging on Cycling Characteristics of Commercial Lithium-Ion Batteries,” Journal of Power Sources, vol. 102, no. 1-2, pp. 302–309, Dec. 2001.
    [18]F. Savoye, P. Venet, M. Millet and J. Groot, “Impact of Periodic Current Pulses on Li-Ion Battery Performance,” IEEE Transactions on Industrial Electronics, vol. 59, no. 9, pp. 3481–3488, Sep. 2012.
    [19]A. Bessman, R. Soares, S. Vadivelu, O. Wallmark, P. Svens, H. Ekstrom, and G. Lindbergh, “Challenging Sinusoidal Ripple Current Charging of Lithium-Ion Batteries,” IEEE Transactions on Industrial Electronics, vol. 65, no. 6, pp. 4750–4757, Jun. 2018.
    [20]Y. -H. Liu and Y. -F. Luo, “Search for an Optimal Rapid Charging Pattern for Li-Ion Batteries Using the Taguchi Approach,” IEEE Transactions on Industrial Electronic, Vol. 57, no. 12, Dec. 2010.
    [21]C. -H. Lee, T. -W. Chang, S. -H. Hsu and J. -A. Jiang, “Taguchi-Based PSO for Searching an Optimal Four Stage Charge Pattern of Li-Ion Batteries,” Journal of Energy Storage, Vol. 21, pp. 301-309, Feb. 2018
    [22]劉元凱,「以電池模型為基礎之五階段定電流充電法最佳充電電流值搜尋」,台灣科技大學電機工程碩士論文,民國一零七年六月。
    [23]C. -H. Lee, M. -Y. Chen, S. -H. Hsu and J. -A. Jiang, “Implementation of an SOC-Based Four Stage Constant Current Charger for Li-Ion Batteries,” Journal of Energy Storage, Vol. 21, pp. 528-537, July. 2018.
    [24]L. Jiang, Y. -D Huang, Y. Li, J. -Q Yu, X. -B Qiao, C. Huang and Y. -J Cao, “Optimization of Variable-Current Charging Strategy Based on SOC Segmentation for Li-Ion Battery,” IEEE Transactions on Intelligent Transportation Systems, Vol. 22, No. 1, Jan. 2021.
    [25]陳品行,「基於剩餘容量之最佳化五階段定電流充電法之研究」,台灣科技大學電機工程碩士論文,民國一一零年一月。
    [26]S. -C. Wang and Y. -H. Liu, “A PSO-Based Fuzzy-Controlled Searching for the Optimal Charge Pattern of Li-Ion Batteries,” IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 2983-2993, May. 2015.
    [27]Y. -H. Liu, J. -H Teng and Y. -C Lin, “Search for an Optimal Rapid Charging Pattern for Lithium-Lon Batteries Using Ant Colony System Algorithm,’’ IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1328-1336, Oct. 2005.
    [28]P. Makeen, H. A. Ghali and S. Memon, “Experimental and Theoretical Analysis of the Fast Charging Polymer Lithium-Ion Battery Based on Cuckoo Optimization Algorithm (COA),’’ IEEE Access, vol. 8, pp. 140486-140496, 2020.
    [29]T. -Vo, X. -P Chen, W. -X Shen and A. Kapoor, “New Charging Strategy for Lithium-Ion Batteries Based on the Integration of Taguchi Method and State of Charge Estimation,’’ Journal of Power Sources, vol. 273, pp. 413-422, Jan.2015.
    [30]L. Jiang, Y. -D Huang, Y. Li, J. -Q Yu, X. -B Qiao, C. Huang and Y. -J Cao, “Optimization of Multi-Stage Constant Current Charging Pattern Based on Taguchi Method for Li-Ion Battery,’’ Applied Energy, vol. 259, 2020.
    [31]C. -L Liu, Y. -S Chiu, Y. -H Liu, Y. -H Ho and S. -S Huang, “Optimization of a Fuzzy-Logic-Control-Based Five-Stage Battery Charger Using a Fuzzy-Based Taguchi Method,’’ Energies, 2013.
    [32]Amy Bohinsky, S. P Rangarajan, Y. Barsukov and Partha P. Mukherjee, “Preventing Lithium Plating during Fast Charging of Lithium Ion Cells,’’ ECS Conference, Oct. 2020.
    [33]Y. Barsukov, Michael A. Vega, Brian P. Alongi. 2018. Apparatus for Fast Battery Charging. United States Patent No. US20200044467A1.
    [34]Y. Barsukov, Michael A. Vega, Brian P. Alongi. 2000. Fast Charging for Lithium Ion Battery. United States Patent No. US6137265A.
    [35]Y. Barsukov, Michael A. Vega, Brian P. Alongi. 2014. Method and Apparatus of Charging the Battery with Globally Minimized Integral Degradation Possible for Predefined Charging Duration. United States Patent No. US9236748B2.
    [36]Y. Gao, X. Zhang, Q. Cheng, B. Guo and J. Yang, “Classification and Review of the Charging Strategies for Commercial Lithium-Ion Batteries,’’ IEEE Access, vol. 7, pp. 43511-43524, 2019.
    [37]S. Mahmud, M. Rahman, Md Kamruzzaman, Md Osman Ali, Md Shariful Alam Emon, H. Khatun and Md Ramjan Ali, “Recent Advances in Lithium-Ion Battery Materials for Improved Electrochemical Performance: A Review’’, Results in Engineering, Volume 15, 2022.
    [38]Tarascon, JM. and Armand, M. “Issues and Challenges Facing Rechargeable Lithium Batteries’’, Nature, vol. 414, pp. 359–367, 2001.
    [39]X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia and X. He, “Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review’’, Energy Storage Mater, vol. 10, pp. 246–267, Jan. 2018.
    [40]P. Mohtat, S. Lee, J.B. Siegel and A.G. Stefanopoulou, “Towards Better Estimability of Electrode-Specific State of Health: Decoding the Cell Expansion’’, Journal of Power Sources, vol. 427 pp. 101–111, Jul. 2019.
    [41]T. Song, J. Xia, J.-H. Lee, D.H. Lee, M.-S. Kwon, J.-M. Choi, J. Wu, S.K. Doo, H. Chang and W.I. Park, “Arrays of Sealed Silicon Nanotubes as Anodes for Lithium Ion Batteries’’, Nano Lett, vol. 10, pp. 1710–1716, 2010.
    [42]S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria and C. Capiglia, “Review on Recent Progress of Nanostructured Anode Materials for Li Ion Batteries’’, Journal of Power Sources, vol. 257, pp. 421–443, Jul. 2014.
    [43]T. Takamura, S. Ohara, M. Uehara, J. Suzuki and K. Sekine, “A Vacuum Deposited Si Film Having a Li Extraction Capacity over 2000 mAh/g with a Long Cycle Life’’, Journal of Power Sources, vol. 129, pp. 96–100, Apr. 2004.
    [44]L. Beaulieu, K. Eberman, R. Turner, L. Krause and J. Dahn, “Colossal Reversible Volume Changes in Lithium Alloys’’, Electrochemical and Solid-State Letters, vol. 4, pp. A137-A140, Sep. 2001.
    [45]Y. Wang, M. Wu and W. Zhang, “Preparation and Electrochemical Characterization of TiO2 Nanowires as an Electrode Material for Lithium-Ion Batteries’’, Electrochimica Acta, vol. 53, pp. 7863–7868, Nov. 2008.
    [46]C. Brissot, M. Rosso, J.-N. Chazalviel and S. Lascaud, “Dendritic Growth Mechanisms in Lithium/Polymer Cells’’, Journal of Power Sources, vol. 81, pp. 925–929, Sep. 1999.
    [47]N. Schweikert, A. Hofmann, M. Schulz, M. Scheuermann, S.T. Boles, T. Hanemann, H. Hahn and S. Indris, “Suppressed Lithium Dendrite Growth in Lithium Batteries Using Ionic Liquid Electrolytes: Investigation by Electrochemical Impedance Spectroscopy, Scanning Electron Microscopy, and in Aitu 7Li Nuclear Magnetic Resonance Spectroscopy’’, Journal of Power Sources, vol. 228, pp. 237–243, Apr. 2013.
    [48]B. Schweighofer, K. M. Raab, and G. Brasseur, “Modeling of High Power Automotive Batteries by the Use of an Automated Test System,” IEEE Transactions on Instrumentation and Measurement, Vol. 52, pp. 1087-1091, Aug. 2003.
    [49]Z. M. Salameh, M. A. Casacca and W. A. Lynch, “A Mathematical Model for Lead-Acid Batteries,” IEEE Transactions on Energy Conversion, Vol. 7, pp. 93-98, Mar. 1992.
    [50]劉峰其,「非線性鋰電池之充放電模型」,國立中央大學電機工程 碩士論文,民國九十九年六月。
    [51]Bio-Logic Inc., “EIS Measurements: Potentio or Galvano Mode?,”
    https://www.biologic.net/wp-content/uploads/2019/08/battery-potentio-or-galvano-eis_electrochemistry-an49.pdf, Nov. 2013.
    [52]M. Messing, T. Shoa and S. Habibi, “Electrochemical Impedance Spectroscopy With Practical Rest-Times for Battery Management Applications,” IEEE Access, 2021.
    [53]Y. Zhang and C.-Y. Wang, “Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode,” Journal of The Electrochemical Society, 2009.
    [54]G. Nagasubramanian, E. P. Roth and D. Ingersoll, “Electrical and Electrochemical Performance Characteristics of Small Commercial Li-Ion Cells,” Battery Conference on Applications and Advances, 1999.
    [55]F. Berthier, J.-P. Diard and R. Michel, “Distinguishability of Equivalent Circuits Containing CPEs: Part I. Theoretical Part,” Journal of Electroanalytical Chemistry, 2001.
    [56]E. Locorotondc, L. Pugi, L. Berzi, M. Pierini, S. Scavuzzc, A. Ferraris, A. G. Airale and M. Carello, “Modeling and Simulation of Constant Phase Element for Battery Electrochemical Impedance Spectroscopy,” IEEE 5th International forum on Research and Technology for Society and Industry (RTSI), 2019.
    [57]Y. S. Cheng, M. T. Chuang, Y. H. Liu, S. C. Wang and Z. Z. Yang, “A Particle Swarm Optimization Based Power Dispatch Algorithm with Roulette Wheel Redistribution Mechanism for Equality Constraint,” Renewable Energy, vol. 88, pp. 58-72, 2016.
    [58]J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” Proceedings of ICNN'95 - International Conference on Neural Networks, vol. 4, pp. 1942-1948, 1995.
    [59]Texas Instruments, “TMS320F28004x Microcontrollers Datasheet (Rev. F),” SPRS945F datasheet, Jan. 2017 [Revised Feb. 2021].
    [60]Texas Instruments, “TMS320F28004x Piccolo TM Microcontrollers,” Available at http://www.ti.com/.
    [61]F. A. Silva, “Lithium-Ion Batteries: Fundamentals and Applications [Book News],” IEEE Industrial Electronics Magazine, vol. 10, pp. 58-59, Mar. 2016.
    [62]Yevgen Barsukov and Jinrong Qian, “Battery Power Management for Portable Devices,” Artech, 2013.
    [63]“IEEE Recommended Practice for Maintenance, Testing, and Replacement of Valve-Regulated Lead-Acid (VRLA) Batteries for Stationary Applications,” IEEE Std 1188-1996, Aug. 1996.
    [64]Samsung Inc., “Lithium Ion Battery-ICR18650-26J,” Specification
    of product, v0.1, 2020.

    QR CODE