簡易檢索 / 詳目顯示

研究生: Leon Valentino Posma Panjaitan
Leon - Valentino Posma Panjaitan
論文名稱: 介面活性劑的種類與濃度對介孔活性玻璃影響之探討
Influence of Types and Concentrations of Surfactant for Mesoporous Bioactive Glass
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王聖璋
Sheng-Chang Wang
梁元彰
Yuan-Chang Liang
楊永欽
Yung-Chin Yang
吳昌謀
Chang-Mou Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 125
中文關鍵詞: 介孔生物活性玻璃噴霧熱裂解不同種類與濃度的介面活性劑生物活性
外文關鍵詞: Types of surfactant, Concentration of surfactant
相關次數: 點閱:308下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Hench在1971年發現了生物活性玻璃(Bioactive glass),接著由於BG的生物活性而吸引了許多學者爭相探討。BG會引起人體的生物反應,當植入人體時,會在值體、BG之間與主體組織產生強力的氫氧基磷灰石(Hydroxyl apatite, HA)化學鍵結,這項特色使BG適合作為牙醫的植入體、骨頭填充物等等的應用。因為HA生成的速率是改良形貌的重要參數之一,已有許多學者做過此研究,例如增加表面積,增加表面積的方法中,最常使用的方法之一為添加介面活性劑以在BG上產生介孔結構,即為介孔生物活性玻璃(Mesoporous bioactive glass, MBG)。前人研究顯示噴霧熱裂解法(Spray pyrolysis, SP)合成MBG可以改善溶膠凝膠法的缺點,然而,SP合成MBG的製程仍然需要下更多努力並加以改良。為了使SP合成MBG可以更完美,使用了不同種類、不同濃度的介面活性劑,本研究採用Pluronic F68、P123、F127作為介面活性劑,搭配14、31、44、53 wt%的濃度,並調查這些參數對MBG的影響且探討何種介面活性劑與何種濃度可以得到最佳的生物活性。分析不同種類、濃度的介面活性劑合成之MBG的晶體結構、形貌、表面積、化學組成,並探討不同種類的介面活性劑與濃度增加對MBG的影響,也藉由浸泡在人體模擬體液(Simulated body fluid, SBF)測量其生物活性,並分析、比較各個種類與濃度的介面活性劑的影響,比較是為了決定給予MBG最佳生物活性的介面活性劑之種類與濃度。


The discovery of bioactive glass by Hench in 1971 has attracted many researchers due to it bioactive property. Bioactive glass elicits biological response from the body that generate mechanically strong biochemical bond, hydroxyl apatite (HA), between implant, bioactive glass, with the host tissue when implanted in human body. This feature of bioactive glass makes it suitable for dental implant, bone filling and many other applications. Since the rate of HA formation is one of its important parameters modifications on morphology have been conducted by many researchers such as increasing the surface area. One of popular approach to increase the surface area is using surfactant as template to generate mesoporous structure in bioactive glass (mesoporous bioactive glass). Spray pyrolysis method has been used to synthesize MBG on previous studies as response to the disadvantage of using sol-gel method to synthesize MBG. However, synthesizing using spray pyrolysis still required many efforts to optimize the MBG produced. To optimize the MBG produced by the spray pyrolysis, various types and concentrations of surfactant are used. Surfactant Pluronic F68, P123 and F127 using various concentrations (14, 31, 44, 53 wt%) are used to investigate its effect on MBG and to study which surfactant and concentration of surfactant has the best bioactive property. MBGs synthesized by using different types and concentrations of surfactant are characterized its crystal structure, morphology, surface area and chemical composition and then studied the effect on it with the increasing concentration and using different type of surfactant. MBGs using different types and concentrations of surfactant also undergo bioactivity test by immersion in SBF (Simulated Body Fluid) and characterized to study the influence of each types and concentrations of surfactant and then compared. The comparison is to determine the most suitable types and concentration of surfactant that gives MBG with the best bioactivity.

ABSTRACT ii 摘要 iii ACKNOWLEDGMENT iv Contents vi Table of Figures viii List of Tables xii CHAPTER 1. INTRODUCTION 1 CHAPTER 2. LITERATURE REVIEW 4 2.1. Bioceramic 4 2.2. Bioactive Materials 8 2.3. Bioactive Glass 9 2.3.1. Composition of Bioactive Glass 9 2.3.2. Fabrication of Bioactive Glass 10 2.3.3. Bioactive Glass Bonding Mechanism 11 2.4. Spray Pyrolysis 14 2.4.1. Spray Pyrolysis Equipment 14 2.4.2. Particle Formation by Spray Pyrolysis 16 2.5. Mesoporous Bioactive Glass 18 2.5.1. Introduction 18 2.5.2. Surfactant in Mesoporous Bioactive Glass 20 CHAPTER 3. MATERIAL AND EXPERIMENTAL PROCEDURE 30 3.1. Chemicals In this study some chemicals are used in order to synthesize MBG. The details of chemicals used in this study are listed in table 3.1. 30 3.2. Experimental Equipment 31 3.3. Experimental Process and Material Preparation 31 3.4. Materials Characterization 34 3.4.1. X-Ray Diffractometer (XRD) 34 3.4.2. Nitrogen Adsorption / Desorption, Brunaeur Emmet Teller 36 3.4.3. Scanning Electron Microscope 36 3.5. Particle Size, Pore Size and Melon-Spherical Shape Distribution Calculation 48 3.6. In-vitro Bioactivity Test 48 CHAPTER 4. RESULTS AND DISCUSSIONS 50 4.1. Analysis on MBG before Bioactivity Test 50 4.1.1. Crystal Structure Characterization Result (XRD and SAED) 50 4.1.2. Characterization on Morphology Result of MBG (SEM, TEM) 59 4.1.3. Surface Area, Brunaeur Emmet Teller (BET) 81 4.1.4. Chemical analyses (Electron Disperse Spectroscopy) 84 4.2. Characterization after Bioactivity Test (SBF Immersion) 86 4.2.1. XRD Pattern Bioactive Tested MBG 86 4.2.2. Morphology Characterization after SBF Immersion 103 CHAPTER 5. CONCLUSIONS 107 CHAPTER 6. FUTURE WORKS 108 REFERENCES 109

[1] W. Cao, L.L. Hench, Bioactive materials, Ceramics International 22 (6) (1996) 493-507.
[2] L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of Biomedical Materials Research 5 (6) (1971) 117-141.
[3] L.L. Hench, Bioglass and similar materials, in: K.H.J.B. Editors-in-Chief: , W.C. Robert, C.F. Merton, I. Bernard, J.K. Edward, M. Subhash, V. Patrick (Eds.) Encyclopedia of materials: Science and technology (second edition), Elsevier, Oxford, 2001, pp. 563-568.
[4] L.L. Hench, Bioceramics: From concept to clinic, Journal of the American Ceramic Society 74 (7) (1991) 1487-1510.
[5] L.L. Hench, An introduction to bioceramics, Imperial College Press, 2013.
[6] R. Li, A.E. Clark, L.L. Hench, An investigation of bioactive glass powders by sol-gel processing, Journal of Applied Biomaterials 2 (4) (1991) 231-239.
[7] M. Vallet-Regi, Ceramics for medical applications, Journal of the Chemical Society, Dalton Transactions (2) (2001) 97-108.
[8] M. Vallet-Regi, A. Ramila, R.P. del Real, J. Perez-Pariente, A new property of mcm-41:  Drug delivery system, Chemistry of Materials 13 (2) (2000) 308-311.
[9] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism, Nature 359 (6397) (1992) 710-712.
[10] X. Yan, C. Yu, X. Zhou, J. Tang, D. Zhao, Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities, Angewandte Chemie International Edition 43 (44) (2004) 5980-5984.
[11] X.X. Yan, H.X. Deng, X.H. Huang, G.Q. Lu, S.Z. Qiao, D.Y. Zhao, C.Z. Yu, Mesoporous bioactive glasses. I. Synthesis and structural characterization, Journal of Non-Crystalline Solids 351 (40–42) (2005) 3209-3217.
[12] R.a. Market, Biomaterials market [by products (polymers, metals, ceramics, natural biomaterials) & applications (cardiovascular, orthopedic, dental, plastic surgery, wound healing, tissue engineering, ophthalmology, neurology disorders)] global forecasts to 2017, in.
[13] S.-J. Shih, Y.-J. Chou, L.V.P. Panjaitan, Synthesis and characterization of spray pyrolyzed mesoporous bioactive glass, Ceramics International 39 (8) (2013) 8773-8779.
[14] S.-J. Shih, Y.-J. Chou, K. Borisenko, Preparation method: Structure–bioactivity correlation in mesoporous bioactive glass, Journal of Nanoparticle Research 15 (6) (2013) 1-9.
[15] Y.-J. Chou, Microstructure and bioactivity correlation of one-step synthesised bioactive glass, in: Material Science and Engineering, Vol. Master, National Taiwan University of Science and Technology, Taipei, Taiwan, 2013.
[16] J.O. Hollinger, An introduction to biomaterials, Taylor & Francis, 2005.
[17] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic a-w3, Journal of Biomedical Materials Research 24 (6) (1990) 721-734.
[18] L. Hench, The story of bioglassR, Journal of Materials Science: Materials in Medicine 17 (11) (2006) 967-978.
[19] K. Okuyama, Preparation of micro-controlled particles usingaerosol process, Journal of Aerosol Science 22, Supplement 1 (0) (1991) S7-S10.
[20] S.-J. Shih, I.C. Chien, Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis, Powder Technology 237 (0) (2013) 436-441.
[21] C.F. Clement, I.J. Ford, Gas-to-particle conversion in the atmosphere: Ii. Analytical models of nucleation bursts, Atmospheric Environment 33 (3) (1999) 489-499.
[22] U. Ciesla, F. Schuth, Ordered mesoporous materials, Microporous and Mesoporous Materials 27 (2–3) (1999) 131-149.
[23] C. Wu, J. Chang, Mesoporous bioactive glasses: Structure characteristics, drug/growth factor delivery and bone regeneration application, Interface Focus 2 (3) (2012) 292-306.
[24] C.J. Brinker, Porous inorganic materials, Current Opinion in Solid State and Materials Science 1 (6) (1996) 798-805.
[25] M. Kruk, M. Jaroniec, A. Sayari, Application of large pore mcm-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements, Langmuir 13 (23) (1997) 6267-6273.
[26] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, A new family of mesoporous molecular sieves prepared with liquid crystal templates, Journal of the American Chemical Society 114 (27) (1992) 10834-10843.
[27] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 279 (5350) (1998) 548-552.
[28] D. Myers, Surfaces, interfaces, and colloids: Principles and applications, Wiley-VCH, 1999.
[29] F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Silica-based mesoporous organic–inorganic hybrid materials, Angewandte Chemie International Edition 45 (20) (2006) 3216-3251.
[30] L. Zhao, X. Yan, X. Zhou, L. Zhou, H. Wang, J. Tang, C. Yu, Mesoporous bioactive glasses for controlled drug release, Microporous and Mesoporous Materials 109 (1–3) (2008) 210-215.
[31] C. Wu, W. Fan, Y. Zhu, M. Gelinsky, J. Chang, G. Cuniberti, V. Albrecht, T. Friis, Y. Xiao, Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure, Acta Biomaterialia 7 (10) (2011) 3563-3572.
[32] X. Li, X. Wang, Z. Hua, J. Shi, One-pot synthesis of magnetic and mesoporous bioactive glass composites and their sustained drug release property, Acta Materialia 56 (13) (2008) 3260-3265.
[33] S.-J. Shih, Y.-J. Chou, I.C. Chien, One-step synthesis of bioactive glass by spray pyrolysis, Journal of Nanoparticle Research 14 (12) (2012) 1-8.
[34] R.J. Farn, Chemistry and technology of surfactants, 1 st ed., Blackwell Publishing Ltd, 2006.
[35] B.J. Krister Holmberg, Bengt Kronberg, Bjorn Lindman, Surfactants and polymers in aqueous solution, 2 ed., John Wiley & Sons Ltd, West Sussex England, 2003.
[36] J.T. Kunjappu, Ink chemistry, in, Vol. 2013, 1993.
[37] C. Tanford, Thermodynamics of micelle formation: Prediction of micelle size and size distribution, Proceedings of the National Academy of Sciences 71 (5) (1974) 1811-1815.
[38] J.N. Israelachvili, D.J. Mitchell, B.W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 72 (0) (1976) 1525-1568.
[39] R.E. Smallman, R.J. BiShop, Chapter 5 - the characterization of materials, in: Modern physical metallurgy and materials engineering (sixth edition), Butterworth-Heinemann, Oxford, 1999, pp. 125-167.
[40] S. BRUNAEUR, Emmett, rh, and teller, e., 1938, J. Amer. Chem. Soc 60 309-319.
[41] E.-C.S. Bettina Voutou, Konstantinos Gianakopolous, Electron microscopy: The basics, in, 2008.
[42] P.J. Goodhew, F.J. Humphreys, R. Beanland, Electron microscopy and analysis, Taylor & Francis, 2001.
[43] S.J. Shih, Y.J. Chou, K.B. Borisenko, Preparation method: Structure-bioactivity correlation in mesoporous bioactive glass, Journal of Nanoparticle Research 15 (6) (2013).
[44] Y. Wan, Y. Shi, D. Zhao, Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach, Chemical Communications (9) (2007) 897-926.
[45] C.-C. Shih, C.-S. Chien, J.-C. Kung, J.-C. Chen, S.-S. Chang, P.-S. Lu, C.-J. Shih, Effect of surfactant concentration on characteristics of mesoporous bioactive glass prepared by evaporation induced self-assembly process, Applied Surface Science 264 (0) (2013) 105-110.
[46] P.T. Spicer, Progress in liquid crystalline dispersions: Cubosomes, Current Opinion in Colloid & Interface Science 10 (5–6) (2005) 274-279.
[47] G. Sivakumar, E. Girija, S. Narayana Kalkura, C. Subramanian, Crystallization and characterization of calcium phosphates: Brushite and monetite, Crystal Research and Technology 33 (2) (1998) 197-205.
[48] Y. Li, M.N. Rahaman, B.S. Bal, D.E. Day, Q. Fu, Early stages of calcium phosphate formation on bioactive borosilicate glass in aqueous phosphate solution, Journal of the American Ceramic Society 91 (5) (2008) 1528-1533.
[49] M.S.-A. Johnsson, G.H. Nancollas, The role of brushite and octacalcium phosphate in apatite formation, Critical Reviews in Oral Biology & Medicine 3 (1) (1992) 61-82.
[50] M.H. Prado Da Silva, J.H.C. Lima, G.A. Soares, C.N. Elias, M.C. de Andrade, S.M. Best, I.R. Gibson, Transformation of monetite to hydroxyapatite in bioactive coatings on titanium, Surface and Coatings Technology 137 (2–3) (2001) 270-276.

QR CODE