簡易檢索 / 詳目顯示

研究生: 柯俊宏
Chun-Hung Ko
論文名稱: 具數位控制之超級電容Reflex充電器
A Digitally-Controlled Reflex Charger for Supercapacitor
指導教授: 林長華
Chang-Hua Lin
口試委員: 謝冠群
王見銘
劉添華
林長華
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 125
中文關鍵詞: Reflex充電法同步整流降壓轉換器超級電容
外文關鍵詞: Reflex Charging Method, Bidirectional Synchronous Rectification Buck Converter, Supercapacitor
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文研製具數位控制之超級電容Reflex充電器。透過數位控制器實現利用鋰電池搭配同步降壓轉換器對超級電容進行充電,並考量超級電容的特性與電壓狀況,規劃出最適合超級電容的充電法則,包括使用4種充電模式:增量充電法、定電流充電法、Reflex充電法及定電壓充電法。其次,使用最大責任週期限制與平均電流控制來實現電感電流控制,並結合正向和反向的電流控制,以達到改良式Reflex充電法的充電方式。此外,本文加入對鋰電池與超級電容各項參數之保護,使系統可操作於安全範圍之內。最後,本文利用PSIM模擬軟體與實測結果相互比較,以驗證其理論的正確性及可行性。


This thesis develops a supercapacitor Reflex charger with digital control. The supercapacitor module is charged by a Li-ion battery using a synchronous buck converter. With the consideration of supercapacitor characteristics and operation voltage conditions, four charging modes are integrated, including the incremental charging method, the constant current charging method, the Reflex charging method and the constant voltage charging method. Secondly, Integrating the maximum duty cycle limitation, average current control, and bidirectional mode to achieve the improved Reflex charging method. In addition, protection of Li-ion batteries and supercapacitors is added into the system to ensure safe operation. Finally, both the PSIM simulation and the experimental results are used to verify the theoretical correctness and feasibility.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 3 1.3 論文架構 4 第二章 電容特性與充電技術分析 5 2.1 電容基本特性簡介 5 2.1.1 二次電池簡介 5 2.1.2 鋰電池簡介與材料種類 7 2.1.3 超級電容簡介 10 2.1.4 超級電容與鋰電池特性比較 13 2.1.5 超級電容等效電路模型分析 15 2.2 充電技術簡介 18 2.2.1 增量電流充電法 18 2.2.2 定電流充電法 19 2.2.3 定電壓充電法 20 2.2.4 定電壓及定電流充電法 21 2.2.5 脈衝電流充電法 22 2.2.6 Reflex充電法 23 2.2.7 本文所提之改良式Reflex快速充電電流控制技術 27 2.3 平衡技術簡介 32 第三章 超級電容充電器 34 3.1 系統架構之分析與控制 34 3.1.1 降壓型轉換器架構介紹 37 3.1.2 降壓型轉換器之工作模式與數學分析 38 3.1.3 平均電流控制與最大責任週期限制控制技術 57 3.2 數位控制之實現 61 3.2.1 數位控制器之介紹 61 3.2.2 數位控制晶片dsPIC33FJ64GS606 62 3.2.3 數位控制晶片與系統之整合 66 第四章 系統規格及設計考量 68 4.1 降壓型轉換器之規格 68 4.2 儲能元件之設計與挑選 69 4.3 電流回授控制之設計與實現 73 4.4 電壓回授控制之設計與實現 77 4.5 溫度回授控制之設計與實現 80 4.6 系統控制流程之說明 82 4.7 高速PWM模組介紹與驅動電路設計 84 4.8 輔助電源之相關說明 86 4.9 類比數位信號轉換器(ADC) 87 4.10 過電流、過電壓及過電壓保護之設計與實現 88 第五章 電路模擬與實測結果 89 5.1 系統規格 89 5.2 PSIM模擬與實測波形 92 5.3 系統特性之實測結果 97 第六章 結論與未來展望 105 6.1 結論 105 6.2 未來展望 106 參考文獻 107

[1] Cheryl, “電動車發展的關鍵因素,鋰離子電池+充電站” stockfeel, September 2016[online] , available:https://ppt.cc/fofwqx
[2] J. M. Blanes, R. Gutiérrez, A. Garrigós, J. L. Lizán and J. M. Cuadrado, "Electric vehicle battery life extension using ultracapacitors and an FPGA controlled interleaved buck–boost converter," IEEE Transactions on Power Electronics, vol. 28, no. 12, pp. 5940-5948, Dec. 2013.
[3] Q. Zhang, W. Deng and G. Li, "Stochastic control of predictive power management for battery/supercapacitor hybrid energy storage systems of electric vehicles," IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3023-3030, July 2018.
[4] Maxwell Technologies, "Energy storage technology, markets and applications, ultracapacitor’s in combination with lithium-ion," 2007.
[5] N. Gurusinghe, N. Kularatna, W. H. Round and D. A. Steyn-Ross, "Design approaches for fast supercapacitor chargers for applications like SCATMA, SRUPS," in conf. Rec. APEC, Long Beach, CA, 2016, pp. 2479-2484.
[6] Renesas Electronics, "How to charge supercapacitor banks for energy stroage," [online], available:https://ppt.cc/fup80x
[7] R. Chakole, M. V. Palandurkar and M. M. Renge, "Energy management of supercapacitor with DC-DC converter," in Conf. Rec. ICPEICES, Delhi, 2016, pp. 1-6.
[8] 陳昭甫,“具能量管理之電容去離子淨水系統”,台灣科技大學電機工程研究所碩士論文,西元2018年七月。
[9] R. Karshenas et al., "Bidirectional dc-dc converters for energy storage systems," Energy Storage in the Emerging era of Smart Grids, September 2011.
[10] 鄭培璿,“高頻快速充電電路策略之研究”,台灣大學電機工程研究所博士論文,西元2004年一月。
[11] John R. Miller, "Perspective on electrochemical capacitor energy storage," Applied Surface Science, vol. 460, pages 3-7, December 2018.
[12] A. Hammar, P. Venet, R. Lallemand, G. Coquery and G. Rojat, "Study of accelerated aging of supercapacitors for transport applications," IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 3972-3979, Dec. 2010.
[13] Richard C.Dorf, "Introduction to electric circuits, ninth edition international student version," Wiley Publishers, 2013.
[14] 張瓊仁,“鎳氫電池容量管理之研究”,國立中山大學電機工程系碩士論文,
西元2005年七月。
[15] 劉光瑩,“沒有台灣電池,特斯拉交不了車”天下雜誌668期,March 2019 [online], available:https://www.cw.com.tw/article/article.action?id=5094266
[16] Battery University, "BU-216," [online], available:https://is.gd/qxgGlv
[17] Sanyo/Panasonic, "UR18650NSX datasheet," [online], available:https://is.gd/LJTqur
[18] 吳成有,“超級電容與空氣電極材料製備分析及其電化學性質研究”,國立交通大學材料科學與工程學系博士論文,西元2010年十一月。
[19] Waseem Raza et al., "Recent advancements in supercapacitor technology," Nano Energy, vol. 52, pp. 441-473, October 2018.
[20] Eaton, "XV3550-2R7307-R datasheet," December 2017.
[21] 林宜慶, “超級電容技術發展與應用趨勢分析”車輛中心,西元2009年六月。
[22] K. B. Chin et al., "Energy storage technologies for small satellite applications," in Proc. of the IEEE, vol. 106, no. 3, pp. 419-428, March 2018.
[23] W. Kai, R. Baosen, L. Liwei, L. Yuhao, Z. Hongwei and S. Zongqiang, "A review of modeling research on supercapacitor," in Conf. Rec. CAC, Jinan, 2017, pp. 5998-6001.
[24] 鄭文欽,“含熱效應之超級電容等效電路模型”,台灣科技大學機械工程研究所碩士論文,西元2018年七月。
[25] W. Jing et al., "Battery-supercapacitor hybrid energy storage system in standalone DC microgrids: areview," IET Renewable Power Generation, vol. 11, no. 4, pp. 461-469, 2017.
[26] S. Yang, J. Liu et al., "A single-chip 60-V bulk charger for series Li-Ion batteries with smooth charge-mode transition," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 7, pp. 1588-1597, July 2012.
[27] Y. Jung et al., "A fast and highly accurate battery charger with accurate built-in resistance detection," IEEE Transactions on Power Electronics, vol. 33, no. 12, pp. 10051-10054, Dec. 2018.
[28] P. Liu, L. Chien, S. Lee and A. Chen, "Design of multimode battery charger with dynamic voltage tracking control," in Conf. Rec. IPEC-Niigata ECCE Asia, Niigata, 2018, pp. 2102-2106.
[29] Z. Guo, S. Huang and T. Tsai, "A current-mode control Li-ion battery charger with trickle-current mode and built-in aging detection," in Conf. Rec. ISCAS, Sapporo, Japan, 2019, pp. 1-4.
[30] N. Gurusinghe, N. Kularatna, W. H. Round and D. A. Steyn-Ross, "Energy-limited transient-mode fast supercapacitor charger topology," IEEE Transactions on Power Electronics, vol. 32, no. 2, pp. 911-914, Feb. 2017.
[31] I. Mizumoto, Y. Yoshii, K. Yamamoto and H. Oguma, "Lead-acid storage battery recovery system using on–off constant current charge and short–large discharge pulses," Electronics Letters, vol. 54, no. 12, pp. 777-779, 14 6 2018.
[32] C. Lai, J. Teh, Y. Cheng and Y. Li, "A reflex-charging based bidirectional DC charger for light electric vehicle and DC-microgrids," in Conf. Rec. TENCON IEEE Region 10 Conf., Penang, 2017, pp. 280-284.
[33] George E. Sage, "Pulse-charge battery charger," U. S. Patent 5,633,574, May 1997.
[34] Ronald W. Pittman, "Method and apparatus for rapidly charging and reconditioning a battery," U. S. Patent 5,998,968, December 1999.
[35] Lara J. Martin, "Method of rapidly charging a lithium ion cell," U. S. Patent 5,481,174, January 1996.
[36] F. Ma, W. Chen and J. Wu, "A monolithic current-mode buck converter with advanced control and protection circuits," IEEE Transactions on Power Electronics, vol. 22, no. 5, pp. 1836-1846, Sept. 2007.
[37] H. Gualous, H. Louahlia and R. Gallay, "Supercapacitor characterization and thermal modelling with reversible and irreversible heat effect," IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3402-3409, Nov. 2011.
[38] A. Berrueta, A. Ursúa, I. S. Martín, A. Eftekhari and P. Sanchis, "Supercapacitors: electrical characteristics, modeling, applications, and future trends," IEEE Access, vol. 7, pp. 50869-50896, 2019.
[39] T. J. Liang, T. Wen, K. C. Tseng and J. F. Chen, "Implementation of a regenerative pulse charger using hybrid buck-boost converter," in Conf. Rec. 4th IEEE International Conf. on Power Electronics and Drive Systems, Denpasar, Indonesia, 2001, pp. 437-442 vol.2.
[40] C. Wang, C. Lin and H. Lin, "High-efficiency and low-stress ZVS-PWM bidirectional DC/DC converter for battery charger," in Conf. Rec. 6th IEEE Conf. on Industrial Electronics and Applications, Beijing, 2011, pp. 1185-1190.
[41] F. M. Ibanez, "Analyzing the need for a balancing system in supercapacitor energy storage systems," IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2162-2171, March 2018.
[42] C. Ionescu, A. Vasile and R. Negroiu, "Investigations on balancing circuits for supercapacitor modules," in Conf. Rec. ISSE, Pilsen, 2016, pp. 521-526.
[43] L. Chen, N. Chu, C. Wang and R. Liang, "Design of a reflex-based bidirectional converter with the energy recovery function," IEEE Transactions on Industrial Electronics, vol. 55, no. 8, pp. 3022-3029, Aug. 2008.
[44] Pei-Hsuan Cheng and Chern-Lin Chen, "A high-efficiency fast charger for lead-acid batteries," in Cof. Rec. IEEE 28th Annu. Conf. of the Industrial Electronics Society, Sevilla, 2002, pp. 1410-1415 vol.2.
[45] M. K. Hossain and S. M. R. Islam, "Battery impedance measurement using electrochemical impedance spectroscopy board," in Conf. Rec. ICEEE, Rajshahi, 2017, pp. 1-4.
[46] Microchip, "Assembler/linker/librarian user's guide," 2005.
[47] 簡聰富,“數位控制系統 VS 類比控制系統”,南台科技大學電機工程系。
[48] 程緯軒,“具數位化之可調式電流饋入型高壓電源供應器”,大同大學電機工程研究所碩士論文,西元2017年七月。
[49] Microchip, "dsPIC33FJ32GS606 datasheet," 2005.
[50] Microchip, "Mplab c30 c compiler user's guide," 2007.
[51] Allegro Micro Systems, ACS758LCB-050B-PFF-T, "Thermally enhanced, fully integrated, hall-effect-based linear current sensor ic with 100 μΩ current conductor datasheet," 2018.
[52] 吳義利,“切換式電源轉換器原理與應用技術設計(實例設計導向)” 2015年6月。
[53] Texas Instruments, "μA741 general-purpose operational amplifiers datasheet," 2018.
[54] Analog Devces, "AD596/AD597," 1998.
[55] Toshiba, "TLP250H, TLP250HF Datasheet," 2015.
[56] Minmax, "MCW103, dc/dc converter 3W datasheet," 2011.

無法下載圖示 全文公開日期 2024/08/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE