簡易檢索 / 詳目顯示

研究生: 陳少石
Shao-shih Chen
論文名稱: 矽鍺基光接收電路實現與矽基突發式自動增益電路設計
Realization of SiGe-based Optical Receiving Circuit and Design of Si-based Burst-Mode Automatic Gain Control Circuit
指導教授: 劉政光
Cheng-kuang Liu
口試委員: 張嘉男
Chia-nan Chang
徐世祥
Shih-hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 109
中文關鍵詞: 光通訊接收端積體電路的設計
外文關鍵詞: optical receiving integrated circuit
相關次數: 點閱:252下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要探討光通訊矽鍺基接收端積體電路的設計與實現,其中包含光檢測晶片、突發式增益自動控制轉阻放大器與限幅放大器。
第一部份利用矽基CMOS製程設計光檢測晶片,使用製程為台積電(TSMC) 0.18μm CMOS 1P6M,利用CMOS製程中NMOS做為檢光二極體,以結構內的p-n接面設計提昇檢光效果。
第二部份利用矽鍺基BiCMOS製程實現矽基光檢測晶片,使用製程為台積電(TSMC) 0.35μm SiGe BiCMOS,進而探討光電晶體的電流增益特性與佈局。量測結果顯示該光檢測晶片可以操作在1V的供應電壓,在0.45mm×0.45mm有效照射面積下,響應度650nm±14nm時為1.85A/W,850nm±14nm時為1.207A/W。
第三部份為轉阻放大器(TIA)及限幅放大器(LA)的實現,使用製程為(TSMC) 0.35μm SiGe BiCMOS,電路中採用RGC架構作為主要輸入級,有效隔絕了輸入的寄生電容,藉以提高頻寬表現,並加入限幅放大器(LA)提高輸出電壓振幅,並將輸出電壓限制在數位訊號位準上。當供應電壓3.3V與輸入電容0.25pF時,在頻寬為2.60GHz下,增益為84.80 dBΩ,資料傳輸(Bit Rate)可達3.0Gbps,總功率消耗102.2mW。
第四部份利用RGC架構設計,加上了增益可調轉阻放大器(VGA),以及設計突發式增益自動控制電路(AGC)。使用製程為台積電(TSMC) 0.18μm CMOS 1P6M。以供應電壓1.8V與輸入電容0.25pF模擬時,動態增益範圍63.3~81.2 dBΩ,對應動態頻寬為4.92~5.41GHz,總功率消耗95.82mW。


This paper discusses the design and realization of SiGe-based optical receiving integrated circuit, including photodetector, burst-mode automatic-gain controlled (AGC) transimpedance amplifier (TIA) and limiting amplifier (LA).

First, we use the TSMC 0.18μm CMOS 1P6M process to realize silicon photodetection circuit design. We use NMOS in the CMOS process to design photodiode, utilizing P-N junctions in the structure to achieve photodiode characteristics.

Secondly, we use the TSMC 0.35μm SiGe BiCMOS process to realize the silicon photodetection circuit. Discussion is made on the current gain property and layout of phototransistor. Measurement results show that the photodetector can be operated at power supply lower than 1V, while responsibilityies are 1.85A/W at 650nm±14nm and 1.207A/W at 850nm±14nm for the detector with the area 0.45mm×0.45mm.

Thirdly, the TIA and LA realization using the TSMC 0.35μm SiGe BiCMOS process is made. The RGC type is used as input stage in the circuits. It effectively isolates input parasitic capacitance, and therefore increases bandwidth performance. By adding LA, the output swing is raised and restricts output voltage on the logic level. At 3.3V and 0.25pF input capacitance, the bandwidth is 2.60GHz for a gain of 84.80 dBΩ, the bit rate 3.0Gbps, and the total power consumption is 102.2mW.

Finally, are show a design of a burst-mode silicon receiving circuit using RGC-type TIA with variable gain amplifier (VGA). We use the TSMC 0.18μm CMOS 1P6M process. At 1.8V and 0.25pF input capacitance in our simulation, the dynamic gain range is 63.3~81.2 dBΩ, the corresponding dynamic bandwidth range 4.92~5.41GHz, the total power consumption is 95.82mW.

論文摘要................................................................. I 致謝..................................................................... IV 目錄..................................................................... VI 第一章 緒論..............................................................1 1.1前言.................................................................. 1 1.2研究動機.............................................................. 2 1.3論文大綱.............................................................. 2 第二章 光通訊系統相關基本架構與概念簡介.................................. 5 2.1 光通訊系統基本架構簡介............................................... 5 2.2光通訊發射電路基本架構簡介............................................ 6 2.2.1光源................................................................ 6 2.2.2驅動電路(Laser Driver).............................................. 9 2.3 光通訊接收電路基本架構簡介........................................... 10 2.3.1光檢測器(Photo Detector)............................................ 10 2.3.2標準製程光檢測器.................................................... 11 2.3.3轉阻放大器(Transimpedance Amplifier, TIA)........................... 12 2.3.4限幅放大器(Limiting Amplifier, LA).................................. 14 2.3.5增益自動控制電路(Automatic Gain Control Amplifier, AGC)............. 15 2.3.6時脈資料回復電路(clock-data recovery, CDR).......................... 16 2.4 突發式訊號簡介....................................................... 18 2.5基本概念.............................................................. 20 2.5.1數位訊號............................................................ 20 2.5.2眼圖 ................................................................22 第三章 矽基CMOS製程檢光晶片設計與模擬.................................... 23 3.1光檢測器介紹.......................................................... 23 3.1.1光檢測器簡介........................................................ 24 3.1.2光電轉換基本原理.................................................... 26 3.1.3光二極體等效電路之基本特性.......................................... 28 3.1.4光二極體溫度特性與暗電流分析........................................ 31 3.2 矽基CMOS製程MOS檢光晶片設計與模擬.................................... 33 3.3結果討論.............................................................. 38 第四章 矽鍺基BICMOS製程檢光晶片實現與量測................................ 39 4.1光電晶體介紹.......................................................... 39 4.1.1矽鍺基異質接面光電晶體.............................................. 42 4.2 矽鍺基BICMOS製程檢光晶片的設計....................................... 45 4.3量測結果.............................................................. 48 4.3.1光電晶體的直流特性量測.............................................. 48 4.3.2 以LED為光源的特性量測.............................................. 52 4.4結果討論.............................................................. 56 第五章 矽鍺基光接收前端電路實現.......................................... 57 5.1 矽鍺基光接收前端電路架構............................................. 57 5.2 轉阻放大器簡介....................................................... 58 5.2.1 開迴路轉阻放大器 (Open-Loop TIA)................................... 60 5.2.2 回授型轉阻放大器(Feedback TIA)..................................... 61 5.2.3 Regulated Cascode(RGC)型電路架構................................... 62 5.3 轉阻放大器的設計..................................................... 65 5.3.1 改良式RGC電路架構.................................................. 65 5.3.2 轉阻放大器架構設計................................................. 67 5.4 限幅放大器設計....................................................... 69 5.4.1 級數與增益單元關係................................................. 69 5.4.2 限幅放大器電路架構................................................. 71 5.5 矽鍺基光接收前端電路模擬............................................. 74 5.6 矽鍺基光接收前端電路量測方法與結果................................... 78 5.7討論.................................................................. 81 第六章 矽基突發式自動增益控制光接收電路設計.............................. 83 6.1增益可自動控制(AGC)電路說明........................................... 83 6.1.1增益自動控制的基本機制 ..............................................83 6.2矽基突發式光接收前端電路設計.......................................... 84 6.2.1矽基突發式光接收前端電路設計架構簡介................................ 86 6.2.2 增益自動控制電路................................................... 87 6.2.3 增益可調改良式 Cherry-Hooper轉阻放大器............................. 90 6.2.4限幅放大器與直流位準校正器.......................................... 93 6.2.5輸出緩衝級.......................................................... 94 6.3 矽基突發式增益自動控制光接收端電路模擬............................... 95 6.3.1增益自動控制電路的模擬.............................................. 96 6.3.2整體增益自動控制光接收前端電路模擬.................................. 98 6.4討論.................................................................. 101 第七章 討論與總結........................................................ 103 7-1總結.................................................................. 103 7-2未來發展與展望........................................................ 105 參考文獻................................................................. 106 作者簡介................................................................. 109

[1] 賴信良,「矽鍺基光電晶體與光接收積體電路設計與實現」,碩士論文,國立台灣
科技大學,台北,民國98年。
[2] 楊淳良、趙亮琳、李揚漢、許立根、譚昌文、洪鴻文和曹士林,光纖通信網路,五南
圖書出版股份有限公司,台北,第20-21頁,2007。
[3] 舒浩威,「突發式光接收積體電路設計與實現」,碩士論文,國立台灣科技大學,台
北,民國99年。
[4] J. Gowar, optical communication systems, Prentice Hall, 1993
[5] B. Razavi, design of integrated circuits for optical communication, McGraw
Hill, 2003.
[6] G. Keiser, Optical Fiber Communications, McGraw Hill, 2000
[7] Interfacing maxim laser drivers with laser diodes, Application Note of
MAXIM, 2000.
[8] S. M. Sze and K. K.Ng, Physics of Semiconductor Device, Wiley Interscience,
pp.674-680, 2007.
[9] W.–J. Liu, O. T-C. Chen, L.-K. Dai, P.-K. Weng, K.-H. Huang and F.- W.
Jih, “A CMOS Photodiode Model,” IEEE International Workshop on Behavioral
Modeling and Simulation, pp. 102-105, Santa Rosa, CA , USA, 2001.
[10]B. Razavi, Design of Integrated Circuits for Optial Communications, McGraw-
Hill, 2003.
[11]W. Z. Chen, C. H. Lu, “A 2.5Gbps CMOS optical receiver analog front-
end, ” IEEE Custom Integrated Circuits Conference, Orlando, Florida pp.
359-362, 2002.
[12]章豪順,「適用於超高速數位用戶迴路接收機之類比前端的自動增益器」,碩士論文,國立台灣大學,台北,2001。
[13]劉深淵、楊清淵,鎖相迴路,滄海書局,民國九十五年十一月。
[14]IEEE 802.3ah Ethernet in the First Mile Task Force, Draft 1.414, April
2003.
[15]C. Su, L.-K. Chen, and K.-W. Cheung,, “Theory of burst-mode receiver and
its applications in optical multiaccess networks,” Journal of Lightwave
Technology, vol. 15, no. 4, Apr. 1997.
[16]D. Derickson, Fiber Optic Test and Measurement, Hewlett-Packard
Professional Books, Prentice Hall, 1998.
[17]DWDM Performance and Conformance Testing Primer, Application Note of
Tektronix, 2001.
[18]D. A. Neamen,半導體物理元件,第八章,台北市,台商圖書, 1998.
[19]M. Hohenbild, A. Ghazi; P. Seegebrecht: H. Zimmermann, “Advanced
photodiodes and circuits for OPTO-ASICs,” 2001 International Symposium on
Electron Devices for Microwave and Optoelectronic Applications, 15-16 Nov,
2001.
[20]陳春美,「光照對蕭特基二極體之影響」,碩士論文,國立台灣科技大, 1993.
[21]蔡立民,「接面二極體雜訊特徵的研究」,碩士論文,國立台灣科技大學, 1992.
[22]A. Chatterjee and B. Bhuva, “High speed, high reliability Si-based light
emitters for optical interconnects,” IEEE Interconnect Technology
Conference, pp. 86-88, Burlingame, CA, 2002.
[23]M. K. Das, and N. R. Das, “Effect of Ge-composition on the frequency
response of a Si/Si1-yGey P-i-N photodetector,” Optical Engineering,
SPIE, Vol. 45, Issue12, pp.124001- 124006, 2006.
[24]H. Aharoni, and M. du Plessis, “Low-operating-voltage integrated silicon
light-emitting devices,” IEEE J. Quantum Electronics, vol. 40, no. 5, pp.
557-563, 2004.
[25]D. A. Neamen, Semiconductor Physics & Devices, McGraw Hill , 1998.
[26]T. Yin, A.M. Pappu, A.B. Apsel, “Low-cost, high-efficiency, and high-
speed SiGe phototransistors in commercial BiCMOS,” IEEE Photonics
Technology Letters, vol.18, no.1, January 1, 2006
[27]K.-S. Lai, Huang Ji-Chen, K.Y.-J. Hsu, “ Design and properties of
phototransistor photodetector in standard 0.35-μm SiGe BiCMOS
technology,” IEEE Transactions on Electron Devices , vol.55, no.3 , pp.
774-781, March 2008.
[28]黃凡修, 「10Gb/s光纖通訊系統傳送/接收電路模擬與實作」,碩士論文,國立中央大
學, 2003.
[29]S.-M. park, H.-J. Yoo, “1.25-Gb/s regulated cascode CMOS transimpedance
amplifier for gigabit ethernet applications” , IEEE Journal of Solid-
State Circuit, vol.39, no.1, pp. 112-121, January 2004.
[30]Z. Lu, K.-S. Yeo, J. Ma, M.-A. Do , W.-M. Lim, X. Chen , “Broad-band
design techniques for transimpedance amplifiers,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol.54, no.3, pp.590-600, March
2007.
[31]B. Razavi, Design of Integrated Circuits for Optial Communications, McGraw-
Hill, 2003, pp. 63-65, 103-105, 136-141.
[32]甘瑞銘, 「2.5 Gbps 脈衝式光纖前級接收端電路設計」,碩士論文,國立中央大學,
2004.
[33]W.-Z. Chen, Y.-L. Cheng, D.-S. Lin , “A 1.8-V 10-Gb/s fully integrated
CMOS optical receiver analog front-end,” IEEE Journal of Solid-State
Circuits, vol.40, no.6, pp. 1388-1396, June 2005.
[34]M. Li, B. Hayes-Gill, I. Harrison, “6 GHz transimpedance amplifier for
optical sensing system in low-cost 0.35 μm CMOS, ” Electronics Letters ,
vol.42, no.22, pp.1278-1279, Oct. 26, 2006.
[35]Z. Lu, K.-S. Yeo , W.-M. Lim , M.-A Do, B.-C. Chye, “Design of a CMOS
broadband transimpedance amplifier with active feedback, ” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.18, no.3,
pp.461-472, March 2010.
[36]Y. Ota and R. G. Swartz, “Burst mode compatible optical receiver with
large dynamic range,” J. Lightwave Technol., vol. 8, pp. 1897–1903, Dec.
1990.
[37]C. A. Eldering, “Theoretical determination of sensitivity penalty of
burst-mode fiber optic receiver,” J. Lightwave Technol., vol. 11,
pp.2145–2149, Dec. 1993.
[38]S.-B. Park, J.E. Wilson, I. Mohammed, “The CHIP - peak detectors for
multistandard wireless receivers, ” IEEE Circuits and Devices Magazine,
vol.22, no.6, pp.6-9, Nov.-Dec. 2006.
[39]C.-F. Liao, S.-l. Liu, “A 10Gb/s cmos AGC amplifier with 35dB dynamic
range for 10Gb ethernet, ” IEEE International Solid-State Circuits
Conference, pp.2092-2101, 6-9 Feb. 2006.
[40]C.-F. Liao, S.-I Liu, “40 Gb/s transimpedance-AGC amplifier and CDR
circuit for broadband data receivers in 90 nm cmos,” IEEE Journal of
Solid-State Circuits, vol.43, no.3, pp. 642-655, March 2008.
[41]Y.-L. Cheng, “10 Gbps Optical Receiver Front-End Circuit Design, ”M. S.
thesis, Dept. Elect. Engineer, National Central Univ. Taiwan, China, 2003.
[42]B. Razavi, Design of Integrated Circuits for Optical Communications, pp.
149-151, 2002.
[43]C.M. Tsai and L.R. Huang, “A 21mW 2.5Gb/s 15kΩ self compensated
differential transimpedance amplifier,” IEEE International Solid-State
Circuits Conference, vol. 1, pp. 234-235, Feb. 2005.

QR CODE