簡易檢索 / 詳目顯示

研究生: 張宗瑋
TSUNG-WEI CHANG
論文名稱: 根據加工不同工件之刀具磨耗量最佳化切削參數
Optimization of Cutting Parameters According to Tool Wear of Machining Various Parts
指導教授: 修芳仲
Fang-Jung Shiou
鍾俊輝
Chun-Hui Chung
口試委員: 修芳仲
Fang-Jung Shiou
鍾俊輝
Chun-Hui Chung
梁書豪
Shu-Hao Liang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 68
中文關鍵詞: 車削單目標最佳化切削成本共軛梯度法工件幾何單階製造
外文關鍵詞: Turning, Single Objective Optimization, Machining cost, Conjugate gradient method, Workpiece geometry, Single Stage Manufacturing
相關次數: 點閱:202下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中提出了一種以最佳化方法對於刀具磨耗控制和切削參數調整的概念。刀具磨耗控制是金屬切削過程中的重要問題,嚴重的刀具磨耗導致較差的表面品質和較高的機台負載,從而降低了產品品質和切削效率,因此當刀具磨損達到標準時,必須更換切削刀具。在大多數刀具磨耗研究中,切削參數(例如切削速度和進給率)都在探討如何運用可行的參數範圍以減少刀具磨耗,但是實際上要被加工的零件差異很大,因幾何造型造成刀具與工件之間的接觸面積不斷變化,切削速度和進給率在拐角處會進行調整以避免突然地改變而超過刀具負荷,故以同樣的切削條件不太可能適合加工具有不同幾何形狀的零件。另外材料移除量因工件而異,對於大型產品,期望刀具壽命剛好為操作時間,並且不應在完成一項操作之前更換切削工具。基於這些考慮,提出了一種最佳化切削參數的方法。在這項研究中,成本函數包括加工成本和刀具磨耗損失。每次操作後記錄加工時間和刀具磨耗作為最佳化方法的輸入。經過多次疊代後,可以達到零件的最佳切削速度和進給率。
    在本文中介紹了兩個案例研究,由案例的結果可以看出共軛梯度法應用於最佳化成本的方法能夠提供有效的資訊使操作人員選取適合的車削參數,達到降低總加工成本以及操作後刀具磨耗將接近刀具壽命的目的,使切削效益及生產率提升。


    A novel concept of tool wear control and cutting parameters tuning is proposed in this study. Tool wear control is an important issue in metal cutting processes. The tool wear results in worse surface quality and higher machine loading, which reduce the product quality and the cutting efficiency. Therefore, the cutting tools must be replaced when the tool wear reaches the criteria. In most of the tool wear studies, the cutting parameters such as cutting speed and feed are considered to investigate the feasible range to minimize the tool wear. However, the parts to be machined vary dramatically in reality. It is not possible to machine parts with different geometry using constant cutting conditions. The contact area between the cutting tool and the workpiece changes continuously. The cutting speed and feed are adapted at the corners to avoid sudden change of tool loading. In addition, the amount of material to be removed is different from part to part. For a large product, a longer operating time is expected, and the cutting tool is not supposed to be changed before one operation is finished. According to these considerations, an optimization method of tuning cutting parameters is proposed in this study. In this study, the cost function includes the machining cost and the loss of tool wear. The machining time and the tool wear were recorded after each operation as the input for the optimization algorithm. The optimized cutting speed and feed rate of a part can be approached after a number of iterations. With these cutting parameters, the tool wear is expected to be close to the end of the tool life after the operations with relative lower cutting cost. Two case studies of turning is presented.

    摘要 I Abstract II 圖目錄 V 表目錄 VI 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 2 1.3 論文架構 2 1.4 名詞解釋 3 第2章 文獻回顧與理論基礎 4 2.1 切削條件最佳化 4 2.1.1 單道次操作 5 2.1.2 多道次操作 6 2.2 刀具磨耗與刀具壽命 6 2.2.1 刀具磨耗 6 2.2.2 刀具壽命 11 2.3 最佳化方法 14 2.3.1 窮舉法(Exhaustive Attack Method) 14 2.3.2 最陡坡降法(Steepest Descent Method) 14 2.3.3 牛頓法(Newton Method) 15 2.3.4 共軛梯度法(Conjugate Gradient Method) 16 2.3.5 庫恩-塔克定理((Kuhn-Tucker Theorem, KKT) 17 2.4 切削成本 19 2.4.1 基本原理 19 2.4.2 數學模型 21 第3章 設備與實驗規劃介紹 23 3.1 設備、刀具與工件材料 23 3.2 磨耗量測設備 25 3.3 實驗規劃 27 3.3.1 刀具磨耗實驗 27 3.3.2 切削參數設計 27 3.3.3 刀腹磨耗值量測 30 3.3.4 切削條件最佳化流程圖 31 3.3.5 目標函數與實驗流程 32 第4章 實驗結果 34 4.1 刀具磨耗 34 4.2 成本變化結果 37 4.2.1 幾何造型車削 37 4.2.2 外徑車削 42 4.2.3 案例比較 45 4.3 收斂條件探討 49 第5章 結論與未來展望 51 5.1 結論 51 5.2 未來展望 52 參考文獻 53 附錄A 55

    [1] Gilbert, W. W. (1950). Economics of machining. Machining-Theory and Practice, ASM, Metals Park, OH, 465–485.
    [2] Ráczkövi, L. (2010). Tool life of cutting tool in case of hard turning. Hungarian Journal of Industry and Chemistry, 133-136.
    [3] Cakir, M. C. and Gurarda, A. (1998) Optimization and graphical representation of machining conditions in multi-pass turning operations. Computer Integrated Manufacturing Systems, 11(3), 157-170.
    [4] Meng, Q., Arsecularatne, J., and Mathew, P. (2000). Calculation of optimum cutting conditions for turning operations using a machining theory. International Journal of Machine Tools and Manufacture, 40(12), 1709-1733.
    [5] Lee, B. Y. and Tarng, Y. S. (2000). Cutting-parameter selection for maximizing production rate or minimizing production cost in multistage turning operations. Journal of Materials Processing Technology, 150(1), 61-66.
    [6] Wang, J., Kuriyagawa, T., Wei, X. P., and Guo, D. M. (2002). Optimization of cutting conditions for single pass turning operations using a deterministic approach. International Journal of Machine Tools and Manufacture, 42(9), 1023-1033.
    [7] Wang, R-T and Liu, S.T. (2007). An economic machining processmodel with interval parameters. The International Journal of Advanced Manufacturing Technology, 33(9-10), 900-910.
    [8]Chua, M.S., Loh, H.T., Wong, Y.S., and Rahman, M. (1991). Optimization of cutting conditions for multi-pass turning operations using sequential quadratic programming. Journal of Materials Processing Technology, 28(1-2), 253-262.
    [9]Ko, T.J. and Kim, H.S. (1998). Autonomous cutting parameter regulation using adaptive modeling and genetic algorithms. Precision Engineering, 22(4), 243-251.
    [10]Chien, W.T. and Tsai, C.S. (2003). The investigation on the prediction of tool wear and the determination of optimum cutting conditions in machining 17-4PH stainless steel. Journal of Material Processing Technology, 140 (1-3), 340-345.
    [11] Molinari, A. and Nouari, M. (2002). Modeling of tool wear by diffusion in metal cutting. Wear, 525(1-2), 135-149.
    [12] Wu, S. M. and Ermer, D. (1966). Maximum profit as the criterion in the determination of the optimum cutting conditions. ASME J. Eng. Ind., 435–442.
    [13] Boothroyd, G. and Rusek, P. (1976). Maximum rate of profit criteria in machining. ASME J. Eng. Ind., 217–220.
    [14] Agapiou, J. S. (1992). The optimization of machining operations based on a combined criterion—Part I: The use of combined objectives in single-pass operations. ASME J. Eng. Ind., 500–507.
    [15] Kwon Y. and Fischer G.W. (2003). A novel approach to quantifying tool wear and tool life measurements for optimal tool management. Int J Mach Tools Manuf , 43,359-368
    [16] Sönmez, A.İ., Baykasoǧlu, A., Dereli, T., and Fılız, İ. (2005) Dynamic optimization of multipass milling operations via geometric programming. International Journal of Machine Tools and Manufacture, 297-320.
    [17] ISO3685-2
    [18] Klocke, F. (2011). Manufacturing Processes 1: Cutting. Springer, 81.
    [19] Choudhury S.K. and Appa R.I. (1999). Optimization of cutting parameters for maximizing tool life. Int J Mach Tools Manuf , 39(2), 343-353.
    [20] Bhushan R.K. (2013) Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. J Clean Prod, 39, 242–254.
    [21] Rajemi, M. F., Mativenga, P. T., and Aramcharoen, A. (2010). Sustainable machining: selection of optimum turning conditions based on minimum energy considerations. Journal of Cleaner Production, 18(10-11), 1059-1065.
    [22] Taylor, F. W. (1906). On the Art of Cutting Metals. American society of mechanical engineers.
    [23] Stephenson, D. A., and Agapiou, J. S. (2016). Metal cutting theory and practice. CRC press.
    [24] Cheng, C. H., and Chang, M. H. (2003). A simplified conjugate-gradient method for shape identification based on thermal data. Numerical Heat Transfer: Part B: Fundamentals, 43(5), 489-507.

    QR CODE