簡易檢索 / 詳目顯示

研究生: 黃心渝
Sin-Yu Huang
論文名稱: 多功能含銀金屬超分子聚合物用於高效抗癌、抗菌和抗病毒的治療
Multifunctional silver-containing metallo-supramolecular polymers for high-efficiency anticancer, antibacterial and antiviral therapies
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 鄭智嘉
Chih-Chia Cheng
張雍
Yung Chang
蔡協致
Hsieh-Chih Tsai
陳建光
Jem-Kun Chen
簡秀紋
Hsiu-Wen.Chien
戴子安
Chi-An Dai
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 135
中文關鍵詞: 抗菌活性pH響應性銀基超分子納米凝膠選擇性細胞毒性金屬超分子聚合物抗病毒活性
外文關鍵詞: Antibacterial activity, pH responsiveness, Silver-based supramolecular nanogels, Selective cytotoxicity, Metallosupramolecular polymers, Antiviral activity
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症是當今全球性健康議題,迫切需要在癌症治療方面取得進展。然而環境中菌株耐藥性的議題也受到各界關注,因此尋找新的抗菌解決方案變得至關重要。此外,近年來病毒感染對公共衛生和個人健康帶來嚴重威脅。在這些領域中,功能性生物材料的應用能夠提供新的解決方案,但是都僅限於單一面向或功能性。在本論文中,我們成功開發一種含銀金屬的超分子聚合物,同時具備抗癌、抗菌和抗病毒等三大面向的應用潛力。此超分子聚合物(AgCyPEG)是透過銀離子與胞嘧啶官能化聚合物進行配位反應而得,其所得的產物能在水溶液中形成球型奈米凝膠並展現出許多特異的物理特性,如自發性藍色螢光特性、高靈敏的pH響應性及良好可控的銀離子釋放。隨後我們將AgCyPEG進一步延展至溶血、抗癌、抗菌及抗病毒等醫學應用的評估。首先,溶血測試證實AgCyPEG具有良好的抗溶血特性及結構穩定性。在抗癌方面,AgCyPEG展現出高效選擇性癌細胞毒殺的能力,同時不會影響正常細胞的生物活性。細胞毒殺機制的實驗亦證實AgCyPEG能有效被吞噬至癌細胞內部並導致大量的細胞凋亡。在抗菌方面,AgCyPEG對革蘭氏陽性菌及革蘭氏陰性菌表現出優異的抑制活性,即使AgCyPEG中的銀含量極低 (≤ 3 %)。此外,AgCyPEG在抗病毒方面也表現出對禽流感病毒(H1N1及H5N1)顯著的抗病毒活性,其結果證實AgCyPEG具有作為預防性抗病毒試劑的潛力。總體來說,本次研究結果表明此新興開發的系統具有多面向的治療特性,未來極具潛力拓展至體內與臨床研究的評估。


    Cancer is a global and serious health issue today, with an urgent need for advancements in cancer treatment. The growing problem of antibiotic resistant in the environment has also raised concerns, promoting the importance of finding new antibacterial solutions. In additional, viral infections have become serious threats to public health and personal health in recent years. In these fields, functional biomaterials offer potential solutions, although they have been limited to only one aspect or functionality. In this study, we successfully developed a silver-containing supramolecular polymer with potential applications in anticancer, antibacterial, and antiviral treatments. This supramolecular polymer, AgCyPEG, was synthesized through the coordination reaction between silver ion and cytosine-functionalized polymer. The resulting polymer self-assembles into spherical nanogels in aqueous solutions and exhibits several unique physical properties, such as spontaneous blue fluorescence, highly sensitive pH-responsiveness, and well-controlled release of silver ions. Subsequently, we further evaluated AgCyPEG in biomedical applications, including hemolysis, anticancer, antibacterial, and antiviral activities. The hemolysis test confirmed the anti-hemolytic properties and structural stability of AgCyPEG. In terms of anticancer properties, AgCyPEG demonstrated highly selective cytotoxicity towards cancer cells while preserving the viability of normal cells. The studies of cytotoxic mechanism revealed that AgCyPEG was efficiently internalized by cancer cells, leading to the induction of massive cell apoptosis. In antibacterial experiments, AgCyPEG showed remarkable inhibitory activity against both Gram-positive and Gram-negative bacteria, even with extremely low silver content (≤ 3 %) in AgCyPEG. Moreover, AgCyPEG exhibited significant antiviral activity against avian influenza viruses (H1N1 and H5N1), indicating its potential as a preventive antiviral agent. Overall, our findings demonstrate that this newly developed system possesses multifaceted therapeutic capabilities and holds great potential for further evaluation in in vivo and clinical studies.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 1 第一章 緒論 1.1 研究背景 1.2 研究動機 2 第二章 文獻回顧 2.1 超分子聚合物(Supramolecular Polymers) 2.2 分子自組裝(Self-Assembly) 2.3 胞嘧啶(Cytosine) 2.4 刺激應答(Stimuli-Responsivenesss) 2.5 選擇性細胞毒性(Selective Cytotoxicity) 2.6 抗菌(Antibacterial) 2.6.1 抗菌方法 2.6.2 抗菌機制(Antibacterial Mechanism) 2.7 流感病毒(Influenza Virus) 2.8 抗病毒活性(Antiviral Activity) 2.8.1 抗菌方法 2.8.2 抗病毒機制 2.9 文獻回顧總結 3 第三章 實驗材料及方法 3.1 研究設計 3.2 實驗材料 3.2.1 實驗藥品 3.2.2 實驗溶劑 3.2.3 細胞實驗藥品 3.2.4 抗病毒藥品 3.3 實驗儀器與設備參數 3.3.1 斜式旋轉濃縮機(Rotary Evaporation) 3.3.2 震盪混合器(Vortex Mixer) 3.3.3 冷凍乾燥機(Freeze Dryer) 3.3.4 旋轉塗佈機(Spin Coater) 3.3.5 液態核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer,NMR) 3.3.6 傅立葉轉換紅外光譜(Fourier Transform Infrared Spectroscopy,FTIR) 3.3.7 光致螢光譜儀(Photoluminescence,PL) 3.3.8 紫外線可見光光譜儀(UV/Vis Spectrophotometer) 3.3.9 動態光散射分析儀(Dynamic Light Scattering,DLS) 3.3.10 基質輔助雷射脫附游離飛行時間質譜儀(Matrix Assisted Laser Desorption/Ioniation TIME-OF-FLIGHT Mass Spectrometer) 3.3.11 X射線光電子能譜(X-ray Photoelectron Spectroscopy,XPS) 3.3.12 原子力顯微鏡(Atomic Force Microspoic,AFM) 3.3.13 高解析度場發射掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 3.3.14 感應耦合電漿原子發射光譜儀(Inductively Coupled Plasma Atomic Emission Spectrometer,ICP-AES) 3.3.15 CO2培養箱(CO2 Incubators) 3.3.16 酵素免疫分析儀(ELISA Reader) 3.3.17 螢光顯微鏡(Fluorescence Microscope) 3.3.18 流式細胞儀(Flow Cytometers) 3.4 實驗合成步驟 3.4.1 合成CyPEG480 3.4.2 合成CyPEG700 3.4.3 合成AgCyPEG480 3.4.4 合成AgCyPEG700 3.5 細胞實驗製備 3.5.1 細胞培養基 3.5.2 細胞解凍培養 3.5.3 細胞培養條件 3.5.4 細胞繼代培養 3.5.5 細胞生物毒性測試 3.5.6 螢光顯微鏡製備 3.5.7 溶血試驗 3.5.8 流式細胞儀 3.6 抗菌實驗製備 3.6.1 最低抑菌濃度測定Minimum Inhibitory Concentration(MIC) 3.6.2 塗盤製備 3.7 樣品製備 3.7.1 臨界微胞濃度(Critical micelle concentration,CMC) 3.7.2 pH響應 3.7.3 穩定性測試 3.8 抗病毒實驗製備 3.8.1 斑塊測定(Plaque assay) 3.8.2 免疫螢光(Immunofluorescence) 4 第四章 結果與討論 4.1 化學鑑定分析 4.1.1 傅立葉轉換紅外光譜(Fourier Transform Infrared Spectroscopy,FTIR) 4.1.2 液態核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer, NMR) 4.1.3 基質輔助雷射脫附游離飛行時間質譜儀(Matrix Assisted Laser Desorption/Ioniation TIME-OF-FLIGHT Mass Spectrometer) 4.1.4 X射線光電子能譜(X-ray Photoelectron Spectroscopy,XPS) 4.1.5 感應耦合電漿原子發射光譜儀(Inductively Coupled Plasma Atomic Emission Spectrometer,ICP-AES) 4.2 材料性質分析 4.2.1 紫外線可見光光譜儀(UV/Vis Spectrophotometer)及光致螢光譜儀(Photoluminescence,PL) 4.2.2 pH響應 4.2.3 穩定性測試 4.3 形貌測定 4.3.1 臨界微胞濃度(Critical micelle concentration,CMC) 4.3.2 動態光散射分析儀(Dynamic Light Scattering,DLS) 4.3.3 原子力顯微鏡(Atomic Force Microspoic,AFM)和高解析度場發射掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 4.4 生物細胞測試 4.4.1 溶血試驗(Hemolysis) 4.4.2 細胞毒殺測試(Cytotoxicity test) 4.4.3 螢光顯微鏡(Confocal) 4.4.4 細胞攝取(Cell uptake) 4.4.5 細胞凋亡(Cell Apoptosis) 4.5 抗菌測試 4.5.1 最低抑菌濃度測定(Minimum Inhibitory Concentration,MIC) 4.5.2 塗盤測定 4.6 抗病毒測試 4.6.1 顯微鏡成像 4.6.2 斑塊測試(Plaque assay) 4.6.3 時程試驗(Time-of-addition assay,TOA) 5 第五章 結論 6 第六章 未來與展望 7 第七章 參考文獻

    1.Bashar, M.A. and N. Begam, Breast cancer surpasses lung cancer as the most commonly diagnosed cancer worldwide. Indian Journal of Cancer, 2022. 59(3): p. 438-439.
    2.Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-674.
    3.Gottesman, M.M., T. Fojo, and S.E. Bates, Multidrug resistance in cancer: role of ATP–dependent transporters. Nature Reviews Cancer, 2002. 2(1): p. 48-58.
    4.Schirrmacher, V., From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. International Journal Of Oncology, 2019. 54(2): p. 407-419.
    5.Gigante, V., H. Sati, and P. Beyer, Recent advances and challenges in antibacterial drug development. ADMET And DMPK, 2022. 10(2): p. 147-151.
    6.Dennison, S.R., S.M. Reddy, L.H. Morton, F. Harris, K. Badiani, and D.A. Phoenix, PEGylation enhances the antibacterial and therapeutic potential of amphibian host defence peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2022. 1864(1): p. 183806.
    7.Hacker, K. and D. Houry, Social needs and social determinants: the role of the centers for disease control and prevention and public health. Public Health Reports, 2022. 137(6): p. 1049-1052.
    8.Morones, J.R., J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, and M.J. Yacaman, The bactericidal effect of silver nanoparticles. Nanotechnology, 2005. 16(10): p. 2346.
    9.Lara, H.H., N.V. Ayala-Nuñez, L. Ixtepan-Turrent, and C. Rodriguez-Padilla, Mode of antiviral action of silver nanoparticles against HIV-1. Journal Of Nanobiotechnology, 2010. 8(1): p. 1-10.
    10.AshaRani, P., G. Low Kah Mun, M.P. Hande, and S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS nano, 2009. 3(2): p. 279-290.
    11.Panáček, A., M. Smékalová, R. Večeřová, K. Bogdanová, M. Röderová, M. Kolář, M. Kilianová, Š. Hradilová, J.P. Froning, and M. Havrdová, Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids And Surfaces B: Biointerfaces, 2016. 142: p. 392-399.
    12.Sotiriou, G.A. and S.E. Pratsinis, Antibacterial activity of nanosilver ions and particles. Environmental Science & Technology, 2010. 44(14): p. 5649-5654.
    13.Veerapandian, M. and K. Yun, Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Applied Microbiology And Biotechnology, 2011. 90: p. 1655-1667.
    14.Yao, X., C. Qi, C. Sun, F. Huo, and X. Jiang, Poly (ethylene glycol) alternatives in biomedical applications. Nano Today, 2023. 48: p. 101738.
    15.Harris, J.M. and R.B. Chess, Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery, 2003. 2(3): p. 214-221.
    16.Ihara, T., T. Ishii, N. Araki, A.W. Wilson, and A. Jyo, Silver ion unusually stabilizes the structure of a parallel-motif DNA triplex. Journal Of The American Chemical Society, 2009. 131(11): p. 3826-3827.
    17.Kozasa, T., Y. Miyakawa, A. Ono, and H. Torigoe. The specific interaction between metal cation and mismatch base pair in duplex RNA. in Nucleic Acids Symposium Series. 2008. Oxford University Press.
    18.Ilhami, F.B., S.-Y. Huang, and C.-C. Cheng, Multi-Biofunctional Silver-Containing Metallosupramolecular Nanogels for Efficient Antibacterial Treatment and Selective Anticancer Therapy. Acta Biomaterialia, 2022. 151: p. 576-587.
    19.Ono, A., S. Cao, H. Togashi, M. Tashiro, T. Fujimoto, T. Machinami, S. Oda, Y. Miyake, I. Okamoto, and Y. Tanaka, Specific interactions between silver (I) ions and cytosine–cytosine pairs in DNA duplexes. Chemical Communications, 2008(39): p. 4825-4827.
    20.Yang, L., X. Tan, Z. Wang, and X. Zhang, Supramolecular polymers: historical development, preparation, characterization, and functions. Chemical Reviews, 2015. 115(15): p. 7196-7239.
    21.De Greef, T.F., M.M. Smulders, M. Wolffs, A.P. Schenning, R.P. Sijbesma, and E. Meijer, Supramolecular polymerization. Chemical Reviews, 2009. 109(11): p. 5687-5754.
    22.Aida, T., E. Meijer, and S. Stupp, Functional supramolecular polymers. Science, 2012. 335(6070): p. 813-817.
    23.Niece, K.L., J.D. Hartgerink, J.J. Donners, and S.I. Stupp, Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction. Journal Of The American Chemical Society, 2003. 125(24): p. 7146-7147.
    24.Lehn, J.-M., Supramolecular chemistry: from molecular information towards self-organization and complex matter. Reports On Progress In Physics, 2004. 67(3): p. 249.
    25.Mandal, B.B. and S. Kundu, Self-assembled silk sericin/poloxamer nanoparticles as nanocarriers of hydrophobic and hydrophilic drugs for targeted delivery. Nanotechnology, 2009. 20(35): p. 355101.
    26.Rowan, S.J., S.J. Cantrill, G.R. Cousins, J.K. Sanders, and J.F. Stoddart, Dynamic covalent chemistry. Angewandte Chemie International Edition, 2002. 41(6): p. 898-952.
    27.Barker, D.L. and R.E. Marsh, The crystal structure of cytosine. Acta Crystallographica, 1964. 17(12): p. 1581-1587.
    28.Torigoe, H., I. Okamoto, T. Dairaku, Y. Tanaka, A. Ono, and T. Kozasa, Thermodynamic and structural properties of the specific binding between Ag+ ion and C: C mismatched base pair in duplex DNA to form C–Ag–C metal-mediated base pair. Biochimie, 2012. 94(11): p. 2431-2440.
    29.Xu, Y., C. Zhang, H. Du, Q. Li, H. Zhang, and X. Luo, Fluorometric detection of silver (I) using cytosine-Ag (I)-cytosine pair formation, DNA assembly and the AND logic operation of a multiple-component DNAzyme. Microchimica Acta, 2019. 186: p. 1-6.
    30.Melaku, A.Z., W.-T. Chuang, C.-W. Chiu, J.-Y. Lai, and C.-C. Cheng, Controlling the Hierarchical Structures of Molybdenum Disulfide Nanomaterials via Self-Assembly of Supramolecular Polymers in Water. Chemistry of Materials, 2022. 34(7): p. 3333-3345.
    31.Cheng, C.-C., F.-C. Chang, J.-K. Chen, T.-Y. Wang, and D.-J. Lee, High-efficiency self-healing materials based on supramolecular polymer networks. RSC Advances, 2015. 5(122): p. 101148-101154.
    32.Cheng, C.C., M.C. Liang, Z.S. Liao, J.J. Huang, and D.J. Lee, Self‐Assembled Supramolecular Nanogels as a Safe and Effective Drug Delivery Vector for Cancer Therapy. Macromolecular Bioscience, 2017. 17(5): p. 1600370.
    33.Manayia, A.H., F.B. Ilhami, A.-W. Lee, and C.-C. Cheng, Photoreactive cytosine-functionalized self-assembled micelles with enhanced cellular uptake capability for efficient cancer chemotherapy. Biomacromolecules, 2021. 22(12): p. 5307-5318.
    34.Steiner, T., The hydrogen bond in the solid state. Angewandte Chemie International Edition, 2002. 41(1): p. 48-76.
    35.Bril, M., S. Fredrich, and N.A. Kurniawan, Stimuli-responsive materials: A smart way to study dynamic cell responses. Smart Materials In Medicine, 2022. 3: p. 257-273.
    36.Makhlouf, A.S.H. and N.Y. Abu-Thabit, Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Volume 1: Types and Triggers. 2018: Woodhead Publishing.
    37.Blum, A.P., J.K. Kammeyer, A.M. Rush, C.E. Callmann, M.E. Hahn, and N.C. Gianneschi, Stimuli-responsive nanomaterials for biomedical applications. Journal of the american chemical society, 2015. 137(6): p. 2140-2154.
    38.Peer, D., J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, and R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007. 2(12): p. 751-760.
    39.Balouiri, M., M. Sadiki, and S.K. Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review. Journal of pharmaceutical analysis, 2016. 6(2): p. 71-79.
    40.Jorgensen, J.H. and M.J. Ferraro, Antimicrobial susceptibility testing: general principles and contemporary practices. Clinical Infectious Diseases, 1998: p. 973-980.
    41.Carrapiço, A., M.R. Martins, A.T. Caldeira, J. Mirão, and L. Dias, Biosynthesis of metal and metal oxide nanoparticles using microbial cultures: Mechanisms, antimicrobial activity and applications to cultural heritage. Microorganisms, 2023. 11(2): p. 378.
    42.Park, S., Y.-S. Ko, S.J. Lee, C. Lee, K. Woo, and G. Ko, Inactivation of influenza A virus via exposure to silver nanoparticle-decorated silica hybrid composites. Environmental Science And Pollution Research, 2018. 25: p. 27021-27030.
    43.Xiang, D., Y. Zheng, W. Duan, X. Li, J. Yin, S. Shigdar, M.L. O’Connor, M. Marappan, X. Zhao, and Y. Miao, Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. International Journal Of Nanomedicine, 2013: p. 4103-4114.
    44.Belshe, R.B., The origins of pandemic influenza—lessons from the 1918 virus. New England Journal Of Medicine, 2005. 353(21): p. 2209-2211.
    45.Rigotto, C., K. Hanley, P. Rochelle, R. De Leon, C. Barardi, and M. Yates, Survival of adenovirus types 2 and 41 in surface and ground waters measured by a plaque assay. Environmental Science & Technology, 2011. 45(9): p. 4145-4150.
    46.Chen, L. and J. Liang, An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Materials Science And Engineering: C, 2020. 112: p. 110924.
    47.Shehabeldine, A.M., A.H. Hashem, A.R. Wassel, and M. Hasanin, Antimicrobial and antiviral activities of durable cotton fabrics treated with nanocomposite based on zinc oxide nanoparticles, acyclovir, nanochitosan, and clove oil. Applied biochemistry And Biotechnology, 2022: p. 1-18.
    48.Purniawan, A., M.I. Lusida, R.W. Pujiyanto, A.M. Nastri, A.A. Permanasari, A.A.H. Harsono, N.H. Oktavia, S.T. Wicaksono, J.R. Dewantari, and R.R. Prasetya, Synthesis and assessment of copper-based nanoparticles as a surface coating agent for antiviral properties against SARS-CoV-2. Scientific Reports, 2022. 12(1): p. 4835.
    49.Bhatti, A. and R.K. DeLong, Nanoscale Interaction Mechanisms of Antiviral Activity. ACS Pharmacology & Translational Science, 2023. 6(2): p. 220-228.
    50.Shinohara, Y., K. Tsukamoto, and H. Maeda, A fluorescent turn-on probe for Hg2+ with a high contrast designed by manipulating functional groups tethered to naphthalimide. Journal of Photochemistry And Photobiology A: Chemistry, 2019. 371: p. 407-413.
    51.Wu, P. and X.-P. Yan, Doped quantum dots for chemo/biosensing and bioimaging. Chemical Society Reviews, 2013. 42(12): p. 5489-5521.
    52.Owen, S.C., D.P. Chan, and M.S. Shoichet, Polymeric micelle stability. Nano Today, 2012. 7(1): p. 53-65.
    53.Wu, R., M. Tian, C. Shu, C. Zhou, and W. Guan, Determination of the critical micelle concentration of surfactants using fluorescence strategies. Soft Matter, 2022. 18(47): p. 8920-8930.
    54.Hoo, C.M., N. Starostin, P. West, and M.L. Mecartney, A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions. Journal Of Nanoparticle Research, 2008. 10: p. 89-96.
    55.Sæbø, I.P., M. Bjørås, H. Franzyk, E. Helgesen, and J.A. Booth, Optimization of the Hemolysis Assay for the Assessment of Cytotoxicity. International Journal Of Molecular Sciences, 2023. 24(3): p. 2914.
    56.Saleem, I., N.F. Rana, T. Tanweer, W. Arif, I. Shafique, A.S. Alotaibi, H.A. Almukhlifi, S.A. Alshareef, and F. Menaa, Effectiveness of Se/ZnO NPs in enhancing the antibacterial activity of resin-based dental composites. Materials, 2022. 15(21): p. 7827.
    57.Gérard, C., C. Dufour, S. Goudenege, D. Skuk, and J.P. Tremblay, AG490 improves the survival of human myoblasts in vitro and in vivo. Cell Transplantation, 2012. 21(12): p. 2665-2676.
    58.Kowalska-Krochmal, B. and R. Dudek-Wicher, The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 2021. 10(2): p. 165.
    59.Elshikh, M., S. Ahmed, S. Funston, P. Dunlop, M. McGaw, R. Marchant, and I.M. Banat, Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters, 2016. 38: p. 1015-1019.
    60.Yang, Y., H. Hu, L. Chen, H. Bai, S. Wang, J.-F. Xu, and X. Zhang, Antibacterial supramolecular polymers constructed via self-sorting: promoting antibacterial performance and controllable degradation. Materials Chemistry Frontiers, 2019. 3(5): p. 806-811.
    61.Harada, Y., H. Takahashi, H. Trusheim, B. Roth, K. Mizuta, A. Hirata‐Saito, T. Ogane, T. Odagiri, M. Tashiro, and N. Yamamoto, Comparison of suspension MDCK cells, adherent MDCK cells, and LLC‐MK2 cells for selective isolation of influenza viruses to be used as vaccine seeds. Influenza And Other Respiratory Viruses, 2020. 14(2): p. 204-209.
    62.Yang, W., S. Qu, Q. Liu, and C. Zheng, Avian influenza virus A/chicken/Hubei/489/2004 (H5N1) induces caspase-dependent apoptosis in a cell-specific manner. Molecular And Cellular Biochemistry, 2009. 332: p. 233-241.
    63.Huprikar, J. and S. Rabinowitz, A simplified plaque assay for influenza viruses in Madin-Darby kidney (MDCK) cells. Journal Of Virological Methods, 1980. 1(2): p. 117-120.
    64.Tang, W.-F., H.-P. Tsai, Y.-H. Chang, T.-Y. Chang, C.-F. Hsieh, C.-Y. Lin, G.-H. Lin, Y.-L. Chen, J.-R. Jheng, and P.-C. Liu, Perilla (Perilla frutescens) leaf extract inhibits SARS-CoV-2 via direct virus inactivation. Biomedical Journal, 2021. 44(3): p. 293-303.

    無法下載圖示 全文公開日期 2033/08/25 (校內網路)
    全文公開日期 2033/08/25 (校外網路)
    全文公開日期 2033/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE