簡易檢索 / 詳目顯示

研究生: 陳勁閎
Jing-Hong Chen
論文名稱: 透過溶劑化電解質改善硫化物固態電池之介面接觸與軟包電池的應用
Improving the interfacial contact in sulfide solid-state batteries by solvated electrolyte and making a pouch cell thereof
指導教授: 黃炳照
Bing joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
口試委員: 黃炳照
Bing joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 137
中文關鍵詞: 鋰離子電池硫化物固態電解質硫銀鍺礦全固態電池溶劑化電解液軟包電池
外文關鍵詞: Lithium-ion battery, sulfide solid electrolyte, argyrodite, all solid-state battery, solvated electrolyte, pouch cell
相關次數: 點閱:361下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全固態電池現今是個極具發展性及有趣性的研究領域,能避免大量液態電解液造成潛在的爆炸、漏液危險,且能直接使用鋰金屬當作負極,透過減少體積來提高能量密度,而電解質中又以固態硫化物電解質最為突出,因其擁有最高的導離子度與熱穩定性。但組裝出硫化物全固態電池需要在惰性氣氛下進行,並且要克服介面接觸不良以及副反應問題。
    本研究分為兩個部分,一為全固態電池的組裝,從錠狀電池到膜狀電池,並探討正極、負極、固態電解質的各個參數的影響。使用LNO@NCM811高鎳三元材料當作正極,Li6PS5Cl作為固態電解質,鋰與銦金屬作為負極,1 wt %的添加碳,第二部分為軟包電池組裝,成功組裝出3x3 cm2大小的NMC811||LPSC||In 軟包全固態電池,充電區間2 V~3.9 V、0.02 C,於室溫(25℃)下施予17.5 MPa之外壓,首圈電容高達153.44 mAh/g (2.056 mAh/cm2),經15圈充放電後還有71.6 %以上的維持率。
    另一部分為混和型固態電池,電池中同時包含了液態電解液及固態電解質,而使用的正極極片為目前商用製程樣品,而非複合正極,正極中沒有添加固態電解質。液態電解液添加於正極側,扮演著鋰離子通道的角色,這有兩項優點,一是透過使用一般正極極片省去了處理複合正極對濕氣敏感性的問題,二是透過液態電解液來改善介面接觸不良的問題。本文引入了溶劑化的概念,以溶劑化結構來降低溶劑對硫化物的反應性,使用LiTFSI溶於FEC/TTE/EMC,再依據拉曼光譜鑑定液態電解液與固態電解質之相容性,確保液固兩者能穩定並存於電池中。最後亦將此技術應用於軟包電池中,添加少量電解液 (1.1~1.3 μl/ mAh) 於電池中,開發出NMC811||Liquid electrolyte||LPSC||SUS軟包無陽極準固態電池,充電區間2.5 V~4.3 V,僅施予1.5 MPa之外壓,使用1.5 M濃度的電解液,第二圈電容154.76 mAh/g,總電容高達27.7 mAh,但其壽命是個問題,第十圈時維持率約剩下50 %,還有很大的優化空間。但此項技術是一大突破且已申請專利,使硫化物固態電池離商業化更進了一步,最終建立好測試方法與平台,成功組裝出本實驗第一顆固態軟包電池。


    Nowadays, all solid-state lithium battery (ASSLB) has been a promising and attractive research topic. This kind of battery avoids flammability and leakage of the liquid electrolyte. Besides, it can use lithium as an anode to increase energy density by decreasing the anode volume. Among various solid electrolytes, sulfide-type electrolyte stands out above the rest category of solid electrolytes as it has the highest ionic conductivity and best thermal stability. However, it’s not effortless to practically fabricate ASSLB considering some problems have to be overcome, such as the poor interface contact issue and side reactions between solid electrolytes and electrodes.
    This research is divided into two parts, fabrication, and analysis of each ASSLBs and hybrid solid-state batteries. For the first part, we integrate the parameters of cathodes, anodes, and solid electrolytes for proceeding from pellet to film-type cell. The materials used for cells are LNO@NCM811 as cathode, Li6PS5Cl as solid electrolyte, lithium and indium as an anode, and 1 wt. % of additive carbon. With these prerequisites, we fabricate the NMC811||LPSC||In ASSLB pouch cell with the size of 3x3 cm2 which means we successfully scale up the manufacture from laboratory to pilot-scale. The electrochemical performance is displayed with the charging conditions ranging from 2 to 3.9 V and applied pressure of 17.5 MPa. The capacity of the first cycle is up to 153.44 mAh/g (2.056 mAh/cm2), and it still has 71.6 % capacity retention after 15 cycles.
    Another part is hybrid solid electrolyte batteries which contain both liquid and solid electrolyte. We use commercial cathode instead of a composite one, thus there is no solid electrolyte. Besides that, liquid electrolyte added on the side of the cathode is taken as lithium transport pathways. There are two merits for this case, no moisture sensibility for common electrode and better interface contact since liquid takes part in it.
    Here we introduce the concept of solvation, which is the attraction of the lithium salt for the polar electrolyte. Likewise, we use LiTFSI solvated in FEC/TTE/EMC. The compatibility of liquid and solid is characterized by Raman spectroscopy to see if the two phases can coexist in the battery. Subsequently, we introduce this technique from coin cell to pouch cell. By adding a small quantity of liquid electrolyte (1.1~1.3 μl/ mAh) to the cell, we develop an anode free hybrid solid-state battery, NMC811||Liquid electrolyte||LPSC||SUS. With the condition of charging range from 2.5 to 4.3V, applied pressure of only 1.5 MPa, and 1.5M electrolyte, the capacity of second cycle is 154.76 mAh/g and the total capacity reaches 27.7 mAh. However, the cycle life is a big issue as the retention is only 50 % in the 10th cycle. For that matter, there is still much room for improvement. Nevertheless, we have already established a good method for electrochemical measurement and successfully assembled the solid-state pouch cell. This technique is a significant milestone for ASSLB to be commercialized and has been patented.

    摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XXII 第 1 章 緒論 1 1.1 前言 1 1.2 傳統鋰離子二次電池 2 1.3 全固態電池 3 1.4 電解質 4 1.4.1 有機液態電解質 5 1.4.2 固態電解質 5 1.5 全固態電池未來展望與挑戰 8 第 2 章 文獻回顧 13 2.1 固態電解質膜 13 2.1.1 溶液澆鑄成膜 16 2.1.2 可脫模式片狀膜 19 2.1.3 無溶劑式成膜 20 2.2 固態電池之介面問題 22 2.2.1 壓力與體積 23 2.2.2 人工添加改質層 27 2.2.3 準固態電池 34 2.3 軟包電池 37 2.4 電解貧液 (Lean electrolyte) 43 2.5 溶劑化電解液(Solvated electrolyte) 45 2.6 研究動機與目的 49 第 3 章 實驗方法及實驗儀器 51 3.1 儀器設備 51 3.2 實驗藥品 52 3.3 實驗步驟與分析方法 52 3.3.1 複合正極膜塗布 52 3.3.2 固態膜雙層塗布 54 3.3.3 電解液配製 54 3.3.4 KP-cell固態電池 55 3.3.4.1 錠狀電池 55 3.3.4.2 膜狀電池 56 3.3.5 Pouch軟包電池 57 3.3.5.1 全固態電池 57 3.3.5.2 準固態電池 57 3.4 電化學測試 58 3.4.1 充放電測試 58 3.4.2 交流阻抗分析 59 3.4.3 線性掃描伏安法分析 59 3.5 儀器分析與原理 59 3.5.1 X-ray 繞射分析(XRD) 59 3.5.2 拉曼散射光譜分析儀 (Raman) 60 3.5.3 X光射線光電子光譜XPS(X-ray photon spectrum) 61 第 4 章 硫化物固態電池平台建立及優化 63 4.1 小製程硫化物全固態KP電池 63 4.1.1 導電碳材添加量之選擇 63 4.1.2 雙層塗佈複合薄膜電池 66 4.2 硫化物全固態軟包電池 71 4.2.1 硫化物固態軟包電池組裝設計演進 71 4.2.2 壓力與溫度於軟包電池效能之影響 73 4.3 硫化物準固態軟包電池-溶劑化電解液 81 4.3.1 液態電解液與硫化物電解質相容性探討 82 4.3.2 液態電解液效能測試 89 4.3.3 液態電解液使用量之探討 91 4.3.4 電解液於電池中的電化學測試 93 4.3.5 循環後極片表面鑑定分析 97 第 5 章 結論 103 第 6 章 未來展望 105 參考文獻 107

    1. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-67.
    2. Kim, J. G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M. J.; Chung, H. Y.; Park, S., A review of lithium and non-lithium based solid state batteries. Journal of Power Sources 2015, 282, 299-322.
    3. Hatzell, K. B.; Chen, X. C.; Cobb, C. L.; Dasgupta, N. P.; Dixit, M. B.; Marbella, L. E.; McDowell, M. T.; Mukherjee, P. P.; Verma, A.; Viswanathan, V.; Westover, A. S.; Zeier, W. G., Challenges in Lithium Metal Anodes for Solid-State Batteries. ACS Energy Letters 2020, 5 (3), 922-934.
    4. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7 (2), 513-537.
    5. Zhang, R.; Li, N. W.; Cheng, X. B.; Yin, Y. X.; Zhang, Q.; Guo, Y. G., Advanced Micro/Nanostructures for Lithium Metal Anodes. Adv Sci (Weinh) 2017, 4 (3), 1600445.
    6. Julien, C.; Mauger, A.; Zaghib, K.; Groult, H., Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics 2014, 2 (1), 132-154.
    7. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J., LixCoO2 (0<x⩽1): A new cathode material for batteries of high energy density. Solid State Ionics 1981, 3-4, 171-174.
    8. https://www.quantumscape.com/blog/solid-state-battery-landscape.
    9. Janek, J.; Zeier, W. G., A solid future for battery development. Nature Energy 2016, 1 (9).
    10. (https://technews.tw/2021/01/19/2035-solid-state-battery-increase-1105-times/.
    11. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y., Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem Rev 2016, 116 (1), 140-62.
    12. Liu, S.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Yang, J., Effect of nano-silica filler in polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)–Li(CF3SO2)2N/Li. Journal of Power Sources 2010, 195 (19), 6847-6853.
    13. Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C., Anomalous high ionic conductivity of nanoporous beta-Li3PS4. J Am Chem Soc 2013, 135 (3), 975-8.
    14. Homma, K.; Yonemura, M.; Nagao, M.; Hirayama, M.; Kanno, R., Crystal Structure of High-Temperature Phase of Lithium Ionic Conductor, Li3PS4. Journal of the Physical Society of Japan 2010, 79 (Suppl.A), 90-93.
    15. Rao, R. P.; Adams, S., Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. physica status solidi (a) 2011, 208 (8), 1804-1807.
    16. Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V., Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 2012, 221, 1-5.
    17. Deiseroth, H.-J.; Maier, J.; Weichert, K.; Nickel, V.; Kong, S.-T.; Reiner, C., Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible Three-dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements. Zeitschrift für anorganische und allgemeine Chemie 2011, 637 (10), 1287-1294.
    18. Yu, C.; van Eijck, L.; Ganapathy, S.; Wagemaker, M., Synthesis, structure and electrochemical performance of the argyrodite Li 6 PS 5 Cl solid electrolyte for Li-ion solid state batteries. Electrochimica Acta 2016, 215, 93-99.
    19. Kraft, M. A.; Culver, S. P.; Calderon, M.; Bocher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W. G., Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). J Am Chem Soc 2017, 139 (31), 10909-10918.
    20. Zhou, L.; Minafra, N.; Zeier, W. G.; Nazar, L. F., Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries. Acc Chem Res 2021, 54 (12), 2717-2728.
    21. Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X., All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy & Environmental Science 2021, 14 (5), 2577-2619.
    22. Reimers, J. N.; Dahn, J. R., Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2. Journal of The Electrochemical Society 2019, 139 (8), 2091-2097.
    23. Schipper, F.; Erickson, E. M.; Erk, C.; Shin, J.-Y.; Chesneau, F. F.; Aurbach, D., Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes. Journal of The Electrochemical Society 2016, 164 (1), A6220-A6228.
    24. Jung, S.-K.; Gwon, H.; Lee, S.-S.; Kim, H.; Lee, J. C.; Chung, J. G.; Park, S. Y.; Aihara, Y.; Im, D., Understanding the effects of chemical reactions at the cathode–electrolyte interface in sulfide based all-solid-state batteries. Journal of Materials Chemistry A 2019, 7 (40), 22967-22976.
    25. Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G., Interface Stability in Solid-State Batteries. Chemistry of Materials 2015, 28 (1), 266-273.
    26. Zhu, Y.; He, X.; Mo, Y., Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. ACS Appl Mater Interfaces 2015, 7 (42), 23685-93.
    27. Zhang, Z.; Chen, S.; Yang, J.; Wang, J.; Yao, L.; Yao, X.; Cui, P.; Xu, X., Interface Re-Engineering of Li10GeP2S12 Electrolyte and Lithium anode for All-Solid-State Lithium Batteries with Ultralong Cycle Life. ACS Appl Mater Interfaces 2018, 10 (3), 2556-2565.
    28. Wang, S.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y. H.; Shen, Y.; Li, L.; Nan, C. W., High-Conductivity Argyrodite Li6PS5Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium-Sulfur Batteries. ACS Appl Mater Interfaces 2018, 10 (49), 42279-42285.
    29. Yu, C.; Ganapathy, S.; Hageman, J.; van Eijck, L.; van Eck, E. R. H.; Zhang, L.; Schwietert, T.; Basak, S.; Kelder, E. M.; Wagemaker, M., Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li6PS5Cl Solid-State Electrolyte. ACS Appl Mater Interfaces 2018, 10 (39), 33296-33306.
    30. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A lithium superionic conductor. Nat Mater 2011, 10 (9), 682-6.
    31. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4).
    32. Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M., Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 2011, 182 (1), 116-119.
    33. Lee, K.; Kim, S.; Park, J.; Park, S. H.; Coskun, A.; Jung, D. S.; Cho, W.; Choi, J. W., Selection of Binder and Solvent for Solution-Processed All-Solid-State Battery. Journal of The Electrochemical Society 2017, 164 (9), A2075-A2081.
    34. Lee, K.; Lee, J.; Choi, S.; Char, K.; Choi, J. W., Thiol–Ene Click Reaction for Fine Polarity Tuning of Polymeric Binders in Solution-Processed All-Solid-State Batteries. ACS Energy Letters 2018, 4 (1), 94-101.
    35. Tan, D. H. S.; Banerjee, A.; Chen, Z.; Meng, Y. S., From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat Nanotechnol 2020, 15 (3), 170-180.
    36. Ates, T.; Keller, M.; Kulisch, J.; Adermann, T.; Passerini, S., Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte. Energy Storage Materials 2019, 17, 204-210.
    37. Li, Y.; Arnold, W.; Thapa, A.; Jasinski, J. B.; Sumanasekera, G.; Sunkara, M.; Druffel, T.; Wang, H., Stable and Flexible Sulfide Composite Electrolyte for High-Performance Solid-State Lithium Batteries. ACS Appl Mater Interfaces 2020, 12 (38), 42653-42659.
    38. Zhu, G. L.; Zhao, C. Z.; Peng, H. J.; Yuan, H.; Hu, J. K.; Nan, H. X.; Lu, Y.; Liu, X. Y.; Huang, J. Q.; He, C.; Zhang, J.; Zhang, Q., A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries. Advanced Functional Materials 2021, 31 (32).
    39. Hippauf, F.; Schumm, B.; Doerfler, S.; Althues, H.; Fujiki, S.; Shiratsuchi, T.; Tsujimura, T.; Aihara, Y.; Kaskel, S., Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Materials 2019, 21, 390-398.
    40. Zhang, Z.; Wu, L.; Zhou, D.; Weng, W.; Yao, X., Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries. Nano Lett 2021, 21 (12), 5233-5239.
    41. Doux, J. M.; Nguyen, H.; Tan, D. H. S.; Banerjee, A.; Wang, X.; Wu, E. A.; Jo, C.; Yang, H.; Meng, Y. S., Stack Pressure Considerations for Room‐Temperature All‐Solid‐State Lithium Metal Batteries. Advanced Energy Materials 2019, 10 (1).
    42. Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S., Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chem Rev 2020, 120 (14), 6878-6933.
    43. Wenzel, S.; Sedlmaier, S. J.; Dietrich, C.; Zeier, W. G.; Janek, J., Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ionics 2018, 318, 102-112.
    44. Fan, X.; Ji, X.; Han, F.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J.; Wang, C., Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Sci Adv 2018, 4 (12), eaau9245.
    45. Gao, Y.; Wang, D.; Li, Y. C.; Yu, Z.; Mallouk, T. E.; Wang, D., Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10 GeP2 S12 Solid Electrolyte Interface. Angew Chem Int Ed Engl 2018, 57 (41), 13608-13612.
    46. Nagao, M.; Hayashi, A.; Tatsumisago, M., Bulk-Type Lithium Metal Secondary Battery with Indium Thin Layer at Interface between Li Electrode and Li2S-P2S5 Solid Electrolyte. Electrochemistry 2012, 80 (10), 734-736.
    47. Sakuma, M.; Suzuki, K.; Hirayama, M.; Kanno, R., Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ionics 2016, 285, 101-105.
    48. Luo, S.; Wang, Z.; Li, X.; Liu, X.; Wang, H.; Ma, W.; Zhang, L.; Zhu, L.; Zhang, X., Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat Commun 2021, 12 (1), 6968.
    49. Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S.; Ku, J. H.; Watanabe, T.; Park, Y.; Aihara, Y.; Im, D.; Han, I. T., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy 2020, 5 (4), 299-308.
    50. Santhosha, A. L.; Medenbach, L.; Buchheim, J. R.; Adelhelm, P., The Indium−Lithium Electrode in Solid‐State Lithium‐Ion Batteries: Phase Formation, Redox Potentials, and Interface Stability. Batteries & Supercaps 2019, 2 (6), 524-529.
    51. Zhang, W.; Schröder, D.; Arlt, T.; Manke, I.; Koerver, R.; Pinedo, R.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J., (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. Journal of Materials Chemistry A 2017, 5 (20), 9929-9936.
    52. Busche, M. R.; Drossel, T.; Leichtweiss, T.; Weber, D. A.; Falk, M.; Schneider, M.; Reich, M. L.; Sommer, H.; Adelhelm, P.; Janek, J., Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat Chem 2016, 8 (5), 426-34.
    53. Cao, Y.; Lou, S.; Sun, Z.; Tang, W.; Ma, Y.; Zuo, P.; Wang, J.; Du, C.; Gao, Y.; Yin, G., Solvate ionic liquid boosting favorable interfaces kinetics to achieve the excellent performance of Li4Ti5O12 anodes in Li10GeP2S12 based solid-state batteries. Chemical Engineering Journal 2020, 382.
    54. Liu, Q.; Dzwiniel, T. L.; Pupek, K. Z.; Zhang, Z., Corrosion/Passivation Behavior of Concentrated Ionic Liquid Electrolytes and Its Impact on the Li-Ion Battery Performance. Journal of The Electrochemical Society 2019, 166 (16), A3959-A3964.
    55. Choi, J. W.; Aurbach, D., Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1 (4).
    56. Wu, B.; Yang, Y.; Liu, D.; Niu, C.; Gross, M.; Seymour, L.; Lee, H.; Le, P. M. L.; Vo, T. D.; Deng, Z. D.; Dufek, E. J.; Whittingham, M. S.; Liu, J.; Xiao, J., Good Practices for Rechargeable Lithium Metal Batteries. Journal of The Electrochemical Society 2019, 166 (16), A4141-A4149.
    57. Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini, S.; Reinhart, G., All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production. Journal of Power Sources 2018, 382, 160-175.
    58. Nagpure, S. C.; Tanim, T. R.; Dufek, E. J.; Viswanathan, V. V.; Crawford, A. J.; Wood, S. M.; Xiao, J.; Dickerson, C. C.; Liaw, B., Impacts of lean electrolyte on cycle life for rechargeable Li metal batteries. Journal of Power Sources 2018, 407, 53-62.
    59. Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q., Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities. Angew Chem Int Ed Engl 2020, 59 (31), 12636-12652.
    60. Pan, H.; Han, K. S.; Engelhard, M. H.; Cao, R.; Chen, J.; Zhang, J.-G.; Mueller, K. T.; Shao, Y.; Liu, J., Addressing Passivation in Lithium-Sulfur Battery Under Lean Electrolyte Condition. Advanced Functional Materials 2018, 28 (38).
    61. Olbasa, B. W.; Huang, C. J.; Fenta, F. W.; Jiang, S. K.; Chala, S. A.; Tao, H. C.; Nikodimos, Y.; Wang, C. C.; Sheu, H. S.; Yang, Y. W.; Ma, T. L.; Wu, S. H.; Su, W. N.; Dai, H.; Hwang, B. J., Highly Reversible Zn Metal Anode Stabilized by Dense and Anion‐Derived Passivation Layer Obtained from Concentrated Hybrid Aqueous Electrolyte. Advanced Functional Materials 2021.
    62. Miao, R.; Yang, J.; Xu, Z.; Wang, J.; Nuli, Y.; Sun, L., A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Sci Rep 2016, 6, 21771.
    63. Oh, D. Y.; Nam, Y. J.; Park, K. H.; Jung, S. H.; Cho, S.-J.; Kim, Y. K.; Lee, Y.-G.; Lee, S.-Y.; Jung, Y. S., Excellent Compatibility of Solvate Ionic Liquids with Sulfide Solid Electrolytes: Toward Favorable Ionic Contacts in Bulk-Type All-Solid-State Lithium-Ion Batteries. Advanced Energy Materials 2015, 5 (22).
    64. Zhang, W.; Richter, F. H.; Culver, S. P.; Leichtweiss, T.; Lozano, J. G.; Dietrich, C.; Bruce, P. G.; Zeier, W. G.; Janek, J., Degradation Mechanisms at the Li10GeP2S12/LiCoO2 Cathode Interface in an All-Solid-State Lithium-Ion Battery. ACS Appl Mater Interfaces 2018, 10 (26), 22226-22236.
    65. Hagos, T. M.; Hagos, T. T.; Bezabh, H. K.; Berhe, G. B.; Abrha, L. H.; Chiu, S.-F.; Huang, C.-J.; Su, W.-N.; Dai, H.; Hwang, B. J., Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS Applied Energy Materials 2020, 3 (11), 10722-10733.
    66. Yao, W.; He, S.; Xu, J.; Wang, J.; He, M.; Zhang, Q.; Li, Y.; Xiao, X., Polypyrrole Nanotube Sponge Host for Stable Lithium-Metal Batteries under Lean Electrolyte Conditions. ACS Sustainable Chemistry & Engineering 2021, 9 (6), 2543-2551.
    67. Zhu, H.; Li, Q.; Gong, X.; Cao, K.; Chen, Z., Enhanced High Voltage Performance of Chlorine/Bromine Co-Doped Lithium Nickel Manganese Cobalt Oxide. Crystals 2018, 8 (11).

    無法下載圖示 全文公開日期 2027/01/26 (校內網路)
    全文公開日期 2027/01/26 (校外網路)
    全文公開日期 2027/01/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE