簡易檢索 / 詳目顯示

研究生: 黃昭貴
Chao-Kuei Huang
論文名稱: 含磷污泥與鋁鹽污泥之共調理脫水
Co-conditioning and Dewatering of Phosphorus-Rich Biological Sludge and Alum Sludge
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 張維欽
Wei-Chin Chang
吳志超
Chih-Chao Wu
顧洋
Young Ku
李篤中
Duu-Jong Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 118
中文關鍵詞: 毛細虹吸時間過濾比阻富磷污泥調理共調理脫水陽電性聚電解
外文關鍵詞: conditioning, capillary suction tim
相關次數: 點閱:206下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討富磷污泥之調理脫水,以陽電性聚電解質對富磷污泥進行單一調理及共調理,了解聚電解質對污泥調理之影響,研究中以毛細虹吸時間(CST)及過濾比阻(SRF)作為污泥脫水性之評估,同時量測溶解性磷之濃度,討論去除效率及機制,隨後利用恆溫吸附實驗,探討各種因素對鋁鹽污泥吸附溶解性磷之影響,並套用Langmuir及Freundlich恆溫吸附模式討論之。

    實驗中發現,原始富磷污泥具有良好之脫水性,在單一調理中,聚電解質可進一步改善污泥脫水性,但無法兼具溶解性磷之去除。在共調理實驗中,利用鋁鹽污泥與富磷污泥共調理,鋁鹽污泥可提高富磷污泥之不可壓縮性,同時可吸附水體中之磷酸根,富磷污泥則可改變鋁鹽污泥接近等電點之界達電位,彼此互補,使得共調理後之污泥具由良好之脫水性,且加藥範圍寬廣的優勢。

    恆溫吸附實驗中,溶液酸鹼值的控制是影響吸附能力的重要因子,吸附容量隨酸鹼值上升會有明顯的下降,此外,鋁鹽污泥中氫氧化鋁(Al(OH)3)含量也與吸附效率有直接關係;至於背景離子濃度之影響方面,鋁鹽污泥之吸附能力受其影響有限。


    The objective of this study is to investigate co-conditioning and dewatering of phosphorus-rich biological sludge with alum sludge. Capillary suction time (CST) and specific resistance to filtrate (SRF) were utilized to assess sludge dewaterability. The removal efficiency and the removal mechanism of soluble phosphorus from sludge were examined as well. To assess its role in phosphorus removal, the adsorption of phosphorus on alum sludge was studied. Both Langmuir and Freundlich adsorption isotherms were used to model adsorption reactions .

    In co-conditioning, aluminum sludge, acted as skeleton builder, increased the incompressibility of phosphorus-rich biological sludge and induced adsorption of soluble phosphorus. The addition of phosphorus-rich biological sludge resulted in a broader range for polymer dosing, by shifting the zeta potential of aluminum sludge from nearly neutral to negative range.

    In adsorption experiments, it was found that the adsorptive capacity decreased as pH increased. In addition, the amount of aluminum hydroxide in sludge affected adsorptive capacity significantly.

    摘要……. . I Abstract......................................................................................................II 致謝 ..........................................................................................................III 目錄……………….………………………………………………….....VI 圖目錄…………….……………………………………………………VII 表目錄…………….…………………………………………………... .XI 第一章 緒 論 1 第二章 理論基礎與文獻回顧 3 2.1 磷的來源及環境影…………………… …………………………3 2.1.1 磷酸鹽基本性質 3 2.2 磷酸鹽的去除 3 2.2.1 生物法除磷 4 2.2.1.1 生物除磷原理 4 2.2.1.2 廢棄富磷污泥對生物除磷系統的影響 5 2.2.2 化學除磷法 6 2.2.2.1 化學沉澱法除磷 6 2.2.2.2 吸附法除磷 7 2.2.2.3 影響吸附的因素 8 2.2.2.4 吸附模式 9 2.2.3 利用工業副產物除磷 11 2.3 污泥調理 12 2.3.1 聚電解質 12 2.3.2 污泥之單一調理 14 2.3.3 污泥之共調理 14 第三章 實驗設備與方法 17 3.1 污泥樣品…………………… …………………………17 3.2 實驗藥品 21 3.3 實驗設備與裝置 21 3.4 實驗架構及流程 22 3.5 污泥特性分析 22 3.6 污泥調理 24 3.6.1 單一調理 24 3.6.2 共調理 24 3.7 污泥調理試驗分析 25 3.7.1 毛細虹吸時間試驗 25 3.7.2 過濾比阻試驗 26 3.7.3 層沈降試驗 27 3.7.4 上層液濁度 27 3.7.5 污泥餅含水率 28 3.7.6 界達電位量測 28 3.8 溶解性化學需氧量 29 3.9 等溫吸附實驗 29 3.10 鋁鹽污泥中氫氧化鋁測定 30 3.11 溶解性磷測量 31 第四章 實驗結果與討論 32 4.1 富磷污泥單一調理 32 4.1.1 富磷污泥特性 32 4.1.2 界達電位 32 4.1.3 污泥脫水性質 34 4.1.4 上層液濁度 34 4.1.5 層沉降試驗 37 4.2 富磷污泥與鋁鹽污泥共調理 39 4.2.1 鋁鹽污泥與富磷污泥不同比例混合之實驗結果 39 4.2.1.1 混合污泥界達電位 40 4.2.1.2 污泥混合前後之脫水性質 42 4.2.1.3 污泥混合之層沉降試驗 42 4.2.1.4 污泥混合之上層液濁度 46 4.2.1.5 污泥混合之溶解性化學需氧量 46 4.2.1.6 混合污泥之污泥餅含水濾 46 4.2.1.7 污泥混合後溶解性磷去除結果 50 4.2.2 鋁鹽污泥與富磷污泥濾液以不同比例混合之實驗結果 53 4.2.2.1 污泥濾液混合後溶解性磷去除結果 53 4.2.2.2 污泥濾液混合後酸鹼值變化 55 4.2.2.3 污泥濾液混合前後溶解性化學需氧量 55 4.2.3 鋁鹽污泥與富磷污泥以不同比例混合加藥調理之實驗結果 58 4.2.3.1 污泥共調理之界達電位 58 4.2.3.2 污泥共調理之脫水性質 59 4.2.3.3 污泥共調理之上層液濁度 70 4.2.3.4 污泥共調理之沉降試驗 70 4.2.3.5 污泥共調理之溶解性磷去除結果 73 4.3 恆溫吸附實驗 80 4.3.1 酸鹼值效應 80 4.3.2 離子強度效應 84 4.3.3 吸附劑種類效應 84 第五章 結論 97 參考文獻 ……………………………………………………………...100 附錄A...... 106 A.1恆溫吸附公式之回歸-酸鹼值效應 109 A.2恆溫吸附公式之回歸-離子強度效應 112 A.3恆溫吸附公式之回歸-吸附劑種類 115 作者簡介...... 118

    陳仕桓,「富磷污泥調理脫水之研究」,碩士論文,國立台灣科技大學化學工程系,台北 (2004)。

    鄭光宏,「廢棄富磷生物污泥與鋁鹽污泥共調理之研究」,國立雲林科技大學環境與安全衛生工程研究所,雲林 (2004)。

    Aguilar, M. I., Saez, J., Llorens, M., Soler, A. and Ortuno, J. F., “Nutrient removal and sludge production in the coagulation-focculation process”, Water Research, Vol.36, No.11, pp.2910-2919 (2002).

    Agyei, N. M., Strydom, C. A. and Potgieter, J. H., “An investigation of phosphate ion adsorption from aqueous solution by fly ash and slag”, Cement and Concrete Research, Vol.30, No.5, pp.823-826 (2000).

    Ammary, B. and Cleasby, J. L., “Effect of addition sequence on dual-coagulant performance”, Journal/American Water Works Association, Vol.96, No.2, pp.90-101 (2004).

    APHA, “Standard methods for the examination of water and wastewater”, 19th edn. American Public Health Association, Washington D.C. (1995).

    Bache, D. H. and Papavasilopoulos, E. N., “Viscous behavior of sludge centrate in response to polymer conditioning”, Water Research, Vol.34, No.1, pp.354-358 (2000).

    Bolto, B. A., “Soluble polymers in water purification”, Progress in Polymer Science, Vol.20, No.6, pp. 987-1041 (1995).
    Chang, G. R., Liu, J. C. and Lee, D. J., “Co-conditioning and dewatering of chemical sludge and waste activated sludge”, Water Research, Vol.35, No.3, pp.786-794 (2001).

    Chen, G. W., Chang, I. L., Hung, W. T., and Lee, D. J., “Regimes for zone settling of waste activated sludge”, Water Research, Vol.30, No.8, pp.1844-1850 (1996).

    Cheung, K. C. and Venkitachalam, T. H., “Improving phosphate removal of sand infiltration system using alkaline fly ash”, Chemosphere, Vol.41, No.1-2, pp.243-249 (2000).

    Christensen, J. R., Sorensen, P. B., Christensen, G. L., and Hansen, J. A., “Mechanisms for overdosing in sludge conditioning”, Journal of Environmental Engineering, Vol.119, No.1, pp.159-171 (1993).

    Chubar, N. I., Kanibolotskyy, V. A., Strelko, V. V., Gallios, G. G., Samanidou, V. F., Shaposhnikova, T. O., Milgrand, V. G. and Zhuravlev, I. Z., “Adsorption of phosphate ions on novel inorganic ion exchangers”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.255, No.1-3, pp.55-63 (2005).

    Colin, F. and Gazbar, S., “Distribution of water in sludge in relation to their mechanical dewatering”, Water Research, Vol.29, No.8, pp.2000-2005 (1995).

    Donnert, D. and Salecker, M., “Elimination of phosphorus from municipal waste water”, Water Science and Technology, Vol.40, No.4-5, pp.195-202 (1999).
    Galarneau, E. and Gehr, R., “Phosphorus removal from wastewaters : experimental and theoretical support for alternative mechanisms”, Water Research, Vol.31, No.2, pp.328-338 (1997).

    Gates D. D., Luedecke C., Hermanowicz, S. W. and Jenkins, D., “Mechanism of chemical phosphorus removal in activated sludge with Al (III) and Fe (III)”, National Conference on Environmental Engineering, pp.332-329 (1990).

    Gillberg, L. and Kwak, J. W., “Removal of ortho-phosphate with aluminum and iron salt and their hydroxide”, 6th IAWQ Asia-Pacific Regional Conference, pp.145-153 (1997).

    Guisasola, A., Pijuan, M., Baeza, J. A., Carrera, J., Casas, C. and Lafuente, J., “Aerobic phosphorus release linked to acetate uptake in bio-P sludge:process modeling using oxygen uptake rate”, Biotechnology and Bioengineering, Vol.85, No.7, pp.722-233 (2004).

    Helmy, A. K., Ferreiro, E. A. and De Bussetti, S. G., “Energy, enthalpy, and isosteric heat of adsorption of phosphate on hydrous Al oxide”, Journal of Colloid and Interface Science, Vol.183, No.1, pp.131-134 (1996).

    Huang, S. H. and Chiswell, B., “Phosphate removal from wastewater using spent alum sludge”, Water Science and Technology, Vol.42, No.3-4, pp.295-300 (2000).

    Hsu, P. H. and Rennie, D. A., “Reaction of phosphate in aluminum systems. I. Adsorption of phosphate by x-ray amorphous “aluminum hydroxide”, Canadian Journal of Aoil Science, pp.197-209 (1961).

    Jaffer, Y., Clark, T. A., Pearce, P., and Parsons, S. A., “Potential phosphorus recovery by struvite formation”, Water Research, Vol.36, No.7, pp.1834-1842 (2002).

    Kang, S. K., Choo, K. H. and Lim, K. H., “Use of Iron oxide particles as adsorpent to enhance phosphorus removal from secondary wastewater effluent”, Separation Science and Technology, Vol.38, No.15, pp.3853-3874 (2003).

    Knocke, W. R., Nash, J. W. and Randall, C. W., “Conditioning and dewatering of anaerobically designed BPR sludge”, Journal of Environmental Engineering, Vol.118, No.5, pp.642-656 (1992).

    Kumar, P., Mehrotra, I., and Viraraghavan, T., “Biological phosphorus removal:effect of low temperature”, Journal of Cold Regions Engineering, Vol.10, No.2, pp.63-76 (1996).

    Lai, J. Y. and Liu, J.C., “Co-conditioning and dewatering of alum sludge and waste activated sludge”, Water Science and Technology, Vol.50, No.9, pp.41-48 (2004).

    Lee, D. S., Jeon, C. O. and Park, J. M., “Biological nitrogen removal with enhanced phosphate uptake in a sequencing Batch reactor using single sludge system”, Water Research, Vol.35, No.16, pp.3968-3976 (2001).

    Lee, S. Y. and Gregory, J., “The effect of charge density and molecular mass of cationic polymers on flocculation kinetics in aqueous solution”, Water Supply : the Review Journal of the International Water Supply Association, Vol.9, No.1, pp.11-17 (1991).

    Lijklema, L., “Interaction of orthophosphate with iron(III) and aluminum hydorxides”, Environmental Science & Technology, Vol. 14, No.5, pp.537-541 (1980)

    Liu, Y. H., “Relation between sludge chabohydrate content and biological phosphate removal”, Water Research, Vol.32, No.5, pp.1635-1641 (1998).

    Masschelein, W. J., Devleminck, R. and Genot, J., “The feasibility of coagulant recycling by alkaline reaction of aluminium hydroxide sludges.”, Water Research, Vol.19, No.11, pp.1363-1368 (1985).

    Maurer, M. and Boller, M., “Modelling of phosphorus precipitation in wastewater treatment plants with enhanced biological phosphorus removal”, Water Science and Technology, Vol.39, No.1, pp.147-163 (1999).

    Munch, E.V. and Barr, K., “Controlled struvite crystallization for removing phosphorus from anaerobic digester sidestreams”, Water Research, Vol.35, No.1, pp.151-159 (2001).

    Neyret, S., Ouali, L., Candau, F. and Pefferkorn, E., “Adsorption of polyampholytes on polystyrene latex:effect on colloid stability”, Journal of Colloid and Interface Science, Vol.176, No.1, pp.86-94 (1995).

    Novak, J. T., Agerbak, M. L., Sorensen, B. L., and Hansen, J. A., “Conditioning, filtering, and expressing waste actived aludge”, Journal of Environmental Engineering, Vol.125, No.9, pp.816-824 (1999).

    Novak, J. T., Goodman, G. L., Pariroo, A., and Huang, J. C., “The blinding of sludges during filtration”, Journal Water Pollution Control Federation., Vol.60, No.2, pp.206-214 (1988).

    Ozacar, M. and Sengil, I. A., “Enhancing phosphate removal from wastewater by using polyelectrolytes and clay injection”, Journal of Hazardous Materials, Vol.100, No.1-3, pp.131-146 (2003).

    Pattarkine, V. M. and Randall, C. W., “The requirement of metal cations for enhanced biological phosphorus removal by activated sludge”, Water Science and Technology, Vol.40, No.2, pp.159-165 (1999).

    Pefferkorn, E., “Polyacrylamide at soild/liquid interfaces”, Journal of Colloid and Interface Science, Vol.216, No.2, pp.197-220 (1999).

    Penetra, R. G., Reali, M. A. P., Foresti, E. and Campos, J. R., “Post- treatment of effluents from anaerobic reactor treating domestic sewage by dissolved-air flotation”, Water Science and Technology, Vol.40, No.8, pp.137-143 (1999).

    Petzold, G., Schwarz, S., and Lunkwitz, K., “Higher efficiency in particle flocculation by using combinations of oppositely changed polyelectrolytes”, Chemical Engineering and Technology, Vol.26, No.1, pp.48-53 (2003).

    Pitman, A. R., Deacon, S. L. and Alexander, W. V., “The thickening and treatment of sewage sludge to minimize phosphorus release”, Water Research, Vol.25, No.10, pp.1285-1294 (1991).

    Popel, H. J. and Jardin, N., “Influence of enhanced biological phosphorus removal on sludge treatment”, Water Science and Technology, Vol.28, No.1, pp.263-271 (1993).

    Saito, T., Brdjanovic, D. and Van Loosdrecht, M. C. M., “Effect of nitrite on phosphate uptake by phosphate accumulating organisms”, Water Research, Vol.38, No.17, pp.3760-3768 (2004).

    Shin, E. W., Han, J. S., Jang, M., Min, S.-H., Park J. K. and Rowell, R. M., “Phosphate adsorption on aluminum-impregnated mesoporous silicates:surface structure and behavior of adsorbents”, Environmental Science & Technology, Vol.38, No.3, pp.912-917 (2004)

    Somasundaran, P. and Krishnakumar, S., “Adsorption of surfactant and polymer at the solid-liquid interface”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.123-124, pp.491-513 (1997).

    Somasundaran, P. and Yu, X., “Flocculation/dispersion of suspensions by controlling adsorption and conformation of polymers and surfactants”, Advances in Colloid and Interface Science, Vol.53, pp.33-49 (1994).

    Thomas, P. R., Allen, D. A. and McGregor, D. L., “Evaluation of chemical and Biological nutrient removal”, Water Science and Technology, Vol.34, No.1-2, pp.285-292 (1996).
    Vaxelaire, J. and Cezac, P., “Moisture distribution in activated sludges: a review”, Water Research, Vol.38, No.9, pp.2214-2229 (2004).

    Vesilind, P. A. and Martel, C. J., “Freezing of water and wastewater sludge”, Journal of Environmental Engineering, Vol.116, No.5, pp.854-862 (1990).

    Wu, C. C., Huang, C., and Lee, D. J., “Effects of polymer dosage on alum sludge dewatering characteristics and physical properties”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.112, No.1-3, pp.89-96 (1997).

    Wu, Q., Bishop, P. L., Keener, T. C., Stallard, J. and Stlle, L., “Sludge digestion enhancement and nutrient removal from anaerobic supernatant by Mg(OH)2 application”, Water Science and Technology, Vol.44, No.1, pp.161-166 (2001).

    Yu, X. and Somasundaran, P., “Enhanced flocculation with double flocculants”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.81, pp.17-23 (1993).

    Zeng, L., Li, X. and Liu, J., “Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings”, Water Research, Vol.38, No.5, pp.1318-1326 (2004).

    Zhao, Y. Q., “Settling behaviour of polymer flocculated water-treatment sludge I:analyses of settling curves”, Separation and Purification Technology, Vol.35, pp.71-80 (2004).

    Zhao, Y. Q., “Enhancement of alum sludge dewatering capacity by using gypsum as skeleton builder”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.211, No.2-3, pp.205-212 (2002).

    Zhao, Y. Q. and Bache, D. H., “Conditioning of alum sludge with polymer and gypsum”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.194, No.1-3, pp.213-220 (2001).

    Zhao, Y. Q. and Bache, D. H., “Polymer impact on filter blinding during alum sludge filtration”, Water Research, Vol.36, No.15, pp.3691-3698 (2002).

    Zhao, Y. Q., Papavasilopoulos, E. N., and Bache, D. H., “Clogging of filter medium by excess polymer during alum sludge filtration”, Filtration and Separation, Vol.35, No.10, pp.947-950 (1998).

    Zhao, Y. Q., Papavasilopoulos, E. N., Bache, D. H. and Mackinnon, P. A., “Polymer conditioning of alum sludge and discrepancies between estimates of the optimun dosage”, Water Science and Technology, Vol.46, No.10, pp.115-121 (2002).

    Zhou, A., Tang, H. and Wang, D., “Phosphorus adsorption on natural sediments:modeling and effect of pH and sediment composition”, Water Research, Vol.39, No.7, pp.1245-1254 (2005).

    QR CODE