簡易檢索 / 詳目顯示

研究生: 石其生
Chi-Sheng Shih
論文名稱: 基於灰數及小波轉換之預測模型
A Prediction Model based on Grey Number and Wavelet Transform
指導教授: 范欽雄
Chin-Shyurng Fahn
徐演政
Yen-Tseng Hsu
口試委員: 馮輝文
Huei-Wen Ferng
譚旦旭
Tan-Hsu Tan
葉治宏
Jerome Yeh
黃永發
Yung-Fa Huang
簡福榮
Fu-Rong Jean
學位類別: 博士
Doctor
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 105
中文關鍵詞: 灰預測小波轉換支持向量機
外文關鍵詞: Grey Prediction, Wavelet Transform, SVM
相關次數: 點閱:434下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文呈現了一個結合改良型灰預測,小波轉換及支持向量機的預測模型。首先,論文中提出了一個比原始灰預測GM(1,1) 更加優秀的改良式灰預測模型- GGMM(1,1) (Grey number Grey Modification Model)。除此之外,小波轉換被用來當作降低原始時間序列雜訊的前置處理器。經實驗顯示,若將時間序列經由適當的小波轉換處理後作為灰預測的輸入資料,可以有效地提升灰預測的預測精準度。也由於GGMM(1,1) 是一個產生具有區間預測值的灰數預測模型,因此本論文選擇支持向量機來將其灰數區間值轉換成適當的預測值。
    本論文使用了台灣加權指數的資料(Taiwan Weighted Stock Price Index, TAIEX) 做為實驗的數據來源。經由實驗產生的結果與其他的論文比較,顯示本論文所提出的預測模型有較佳的效果。


    This study presents a method combined with grey prediction, wavelet transform and SVM to improve the accuracy of prediction. Instead of the original grey prediction model GM(1,1), this study shows a new modified GM(1,1) model, which can be used to improve the prediction accuracy, called GGMM(1,1) (Grey number Grey Modification Model). The wavelet transform is used to reduce noise in this study which will improve the prediction significantly. Since GGMM(1,1) produces grey number prediction whose prediction values are between the lower limit and the upper limit, SVM is used to establish the mechanism to select the best predictive value between the lower limit and upper limit of GGMM(1,1).
    This study chooses Taiwan Weighted Stock Price Index (TAIEX) as the object of this experiment. It also compares the experimental results with other studies. The final result shows that this study has better prediction effect than the other models.

    Table of Contents 摘要 Abstract List of Figures List of Tables Chapter 1 Introduction 1.1 Research Motivation 1.2 Research Purpose 1.3 Research Method Chapter 2 Literature Review 2.1 Time Series 2.2 Grey System 2.2.1 Grey Generation 2.2.2 Grey Relational Analysis (GRA) 2.3 Wavelet Transform 2.3.1 Continuous Wavelet Transform 2.3.2 Discrete Wavelet Transform 2.3.3 Multiscale Analysis 2.3.4 Daubechies Wavelet 2.4 Support Vector Machine Chapter 3 Grey Modification Model with Progression Technique 3.1 Grey model 3.2 Grey number 3.3 The proposed grey number grey modification model 3.3.1 Grey modification model 3.3.2 The progression technique 3.4 Illustrative examples 3.4.1 Numerical series 3.4.2 Stock market Chapter 4 Research Method 4.1 Data Selected Range and Process 4.2 Wavelet Decomposition Algorithm 4.3 Building GGMM(1,1) Prediction model 4.4 Building SVM Chapter 5 Experimental Results 5.1 Prediction with Wavelet 5.2 Wavelet with Different Levels 5.3 GGMM(1,1) with Different Parameters 5.4 Grid Search of Wavelet and GGMM(1,1) 5.5 SVM 5.6 Performance Comparison Chapter 6 Conclusions References

    References
    [1] J. Gubbi, R. Buyya, S. Marusic, M.Palaniswami, Internet of Things (IoT): A vision, architectural elements, and future directions, Future Generation Computer Systems 29 (2013) 1645-1660.
    [2] G.M, Rebeiz, RF MEMS: theory design and technology, Wiley (2004).
    [3] JW Gardner, VK Varadan, OO Awadelkarim, Microsensors MEMS and smart devices, Wiley (2001).
    [4] N. Xu, Y. Dang, J. Cui, Comprehensive optimize GM(1,1) model an application for short term for forecasting of Chinese energy consumption and production, Journal of Systems Engineering and Electronics 26 (2015) 794-801.
    [5] G.E.P. Box, G.M. Jenkins, G.C. Reinsel, G.M. Ljung, Time Series Analysis: Forecasting and Control, Wiley (2016).
    [6] D.C. Montgomery, C.L. Jennings, M. Kulahci, Introduction to Time Series Analysis and Forcasting, Wiley (2016).
    [7] R.M. Heiberger, B. Holland, Time Series Analysis, Springer (2015).
    [8] P.S. Addison, The Illustrated Wavelet Transform Handbook, CRC Press (2017).
    [9] J.B. Guerard, Jr., Introduction to financial forecasting, Springer (2013).
    [10] J.W. Hall, Trading on the edge: neural, genetic, and fuzzy systems for chaotic financial markets, Wiley New York (1994).
    [11] M.D. Zoltowski, A.S. Bopardikar, Wavelet Transforms: Introduction to Theory and Applications, Addison Wesley, Boston (1998).
    [12] J.L. Starck, F. Murtagh, A. Bijaoui, Image and Data Analysis: The Multiscale Approach, Cambridge University Press, Cambridge UK (1998).
    [13] M. Unser, Texture classification and segmentation using wavelet frames, IEEE Transactions on Image Processing 4 (1995) 1549-1560.
    [14] T. Shin, I. Han, Optimal signal multi-resolution by genetic algorithms to support artificial neural networks for exchange-rate forecasting, Expert Systems with Applications 18 (2000) 257-269.
    [15] A.A. Vicente, Multiresolution FIR neural-network-based learning algorithm applied to network traffic prediction, IEEE Transactions on systems, man and cybernetics – part C 36 (2006) 208-220
    [16] B.L. Zhang, R. Coggins, M.A. Jabri, B. Flower, Multiresolution forecasting for futures trading using wavelet decompositions, IEEE Transactions on Neural Networks , 12 (2001) 765-775.
    [17] D.B. Percival, A.T. Walden, Wavelet Methods for Time Series Analysis, Cambridge University Press, Cambridge, UK (2000)
    [18] S. Yousefi, I. Weinreich, D. Reinarz, Wavelet-based prediction of oil prices, Chaos, Solitons and Fractals 25 (2005) 265-275.
    [19] P.C. Chang, C.Y. Fan, A hybrid system integrating a wavelet and TSK fuzzy rules for stock price forecasting, IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews 38 (2008) 802-815.
    [20] W. Dai, C.J. Lu, Financial time series forecasting using a compound model based on wavelet frame and support vector regression, Conference on Natural Computation (2008) 328-332.
    [21] E. Zhang, D. Wang, H. Li, A Comprehensive High Order Type 2 Fuzzy Time Series Forecasting Model, Control and Decision Conference (2016)
    [22] C.L. Lee, S.C. Kuo, C.J. Lin, An efficient forecasting model based on an improved fuzzy time series and a modified group search optimizer, Applied Intelligence 46 (2017) 641-651
    [23] S.M. Chen, Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems 81 (1996) 311-319.
    [24] S.M. Chen, C.D. Chen, TAIEX forecasting based on fuzzy time series and fuzzy variation groups. IEEE Transactions on Fuzzy Systems 19 (2011) 1-12.
    [25] H.K. Yu, Weighted fuzzy time-series models for TAIEX forecasting. Phys A 349 (2005) 609-624.
    [26] L.Y. Wei, A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting, Applied Soft Computing vol.42 (2016) 368-376.
    [27] Y.S. Chen, C.H. Cheng, C.L. Chiu, S.T. Huang, A study of ANFIS-based multi-factor time series models for forecasting stock index, Applied Intelligence 45 (2016) 277-292.
    [28] J. Tinbergen, Statistical Analysis of Business Cycle Theories, (1919-1932).
    [29] J.L. Deng. Control problems of grey systems, System and Control Letters (1982) 288-294.
    [30] V. Bjorn, Multiresolution methods for financial time series prediction, IEEE on Computational Intelligence for Financial Engineering (1995) 97.
    [31] B. Doucoure, K. Agbossou, A. Cardenas, Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data, Renewable Energy 92 (2016) 202-211.
    [32] L. Yu, S. Wang, K. K. Lai, Mining Stock Market Tendency Using GA-Based Support Vector Machines, Internet and Network Economics 3828 (2005) 336-345.
    [33] S. Mallat, A Theory for Multi-resolution Approximation: the Wavelet Approximation, IEEE Trans. PAMI 11 (1989) 674-693.
    [34] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press (1998).
    [35] V.N.Vapnik, The Nature of Statistical Learning Theory, Springer (1995).
    [36] J.D. Farmer, J.J. Sidorowich, Predicting chaotic time series, Phys. Rev. Lett. 59 (1987) 845-847.
    [37] A. Monin, G. Salut, ARMA lattice identification: a new hereditary algorithm, IEEE Trans. Signal Process. 44 (1996) 360–370.
    [38] M. Ture, I. Kurt, Comparison of four different time series methods to forecast hepatitis A virus infection, Expert Syst. Appl. 31 (2006) 41-46.
    [39] H.M. Valenzuela, A.S. Jabbi, 2-D recursive bilinear model for nonlinear signal, IEEE Trans. Circuits Syst. II: Analog Digital Signal Process. 40 (1993) 241-250.
    [40] C. Alippi, V. Piuri, Experimental neural networks for prediction and identification, IEEE Trans. Instrum. Meas. 45 (1996) 670-676.
    [41] N. Baba, M. Kozaki, An intelligent forecasting system of stock price using neural networks, Proc. IJCNN 1 (1992) 371-377.
    [42] G.S. Jang, F.P. Lai, B.W. Wang, T.M. Parng, Intelligent stock trading system with price trend prediction and reversal recognition using dual module neural network, J. Appl. Intell. 3 (1993) 225-248.
    [43] Y.T. Hsu, C.S. Cheng, C.C. Wu, Grey modeling using neural network, J. Grey Syst. 9 (1997) 219-232.
    [44] S.C. Chi, H.P. Chen, C.H. Cheng, A forecasting approach for stock index future using grey theory and neural networks, Proc. IJCNN 6 (1999) 3850-3855.
    [45] Y.T. Hsu, C.B. Lin, H.C. Cheng, Grey model selections based on fuzzy trend prediction, J. Fuzzy Math. 7 (1999) 897-905.
    [46] F.M. Tseng, G.H. Tzeng, A fuzzy seasonal ARIMA model for forecasting, Fuzzy Sets Syst. 126 (2002) 367-376.
    [47] J.S.R. Jang, Adaptive-network-based fuzzy inference systems, IEEE Trans. Syst. Man Cybern. 23 (1991) 665-685.
    [48] C.T. Lin, C.S.G. Lee, Neural-network-based fuzzy logic control and decision systems, IEEE Trans. Syst. Man Cybern. 40 (1991) 1414-1427.
    [49] Y.H. Lin, P.C. Lee, Novel high-precision grey forecasting model, Automat. Construct. 16 (2007) 771-777.
    [50] J. Zhou, R. Fang, Y. Li, Y. Zhang, B. Peng, Parameter optimization of nonlinear grey Bernoulli model using particle swarm optimization, Appl. Math.Comput. 207 (2009) 292-299.
    [51] W.Y. Wu, S.P. Chen, A prediction method using the grey model GMC(1,n) combined with the grey relational analysis: a case study on Internet access population forecast, Appl. Math. comput. 169 (2005) 198-217.
    [52] C.B. Lin, S.F. Su, Y.C. Hsu, High precision forecast using grey models, Int. J. Syst. Sci. 32 (2001) 609-619.
    [53] T.L. Tien, The deterministic grey dynamic model with convolution integral DGDMC(1,n), Appl. Math. Model. 33 (2009) 3498-3510.
    [54] T.Y. Liu, J. Yeh, C.M. Chen, Y.T. Hsu, A grey ART system for grey information processing, Neurocomputing 56 (2004) 407-414.
    [55] J.L. Deng, Control problem of grey system, Syst. Control Lett. 5 (1982) 288-294.
    [56] N.M. Xie, S.F. Liu, Discrete grey forecasting model and its optimization, Appl. Math. Model. 33 (2009) 1173-1186.
    [57] T.L. Tien, A research on the deterministic grey dynamic model with multiple inputs DGDMMI(1,1,1), Appl. Math. Comput. 139 (2003) 401-416.
    [58] C.L. Tan, S.P. Chang, Residual correction method of Fourier series to GM(1,1) model, in: Proceedings of the First National Conference on Grey Theory and Applications, Kauhsiung, Taiwan (1996) 93-101.
    [59] C.L. Tan, B.F. Lu, Grey Markov chain forecasting model, in: Proceedings of the First National Conference on Grey Theory and Applications, Kauhsiung,Taiwan, (1996) 157-162.
    [60] C.K. Chen, T.L. Tien, The indirect measurement of tensile strength by the deterministic grey dynamic model DGDM(1,1,1), Int. J. Syst. Sci. 28 (1997) 683-690.
    [61] S.F. Liu, Y. Lin, Grey Information: Theory and Practical Applications (2005) Springer.
    [62] Q.X. Li, S.F. Liu, The foundation of the grey matrix and the grey input–output analysis, Appl. Math. Model. 32 (2008) 267-291.
    [63] N.M. Xie, S.F. Liu, Novel methods on comparing grey numbers, Appl. Math. Model. 34 (2010) 415-423.
    [64] D. Yamaguchi, G.D. Li, K. Mizutani, T. Akabane, M. Nagai, M. Kitaoka, On the generalization of grey relational analysis, J. Grey System 9 (2006) 23-34.
    [65] Y.M. Wang, T.M.S. Elhag, Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment, Expert Syst. Appl. 31 (2006) 309-319.
    [66] Y.H. Lin, P.C. Lee, H.I. Ting, Dynamic multi-attribute decision making model with grey number evaluations, Expert Syst. Appl. 35 (2008) 1638-1644.
    [67] K.L. Wen, T.C. Chang, H.T. Chang, M.L. You, The adaptive a in GM(1,1) model, in: The Proceeding of IEEE SMC International Conference, 199, pp. 304-308.
    [68] P. Zhou, Y. Wei, The optimization of background value in grey model GM(1,1), J. Grey Syst. 9 (2006) 139-142.
    [69] J.L. Yuan, X.Y. Li, L. Zhong, Optimized grey RBF prediction model based on genetic algorithm, in: International Conference on Computer Science and Software Engineering 1 (2008) 74-77.
    [70] Y. Dang, S. Liu, K. Chen, The GM models that x(n) be taken as initial value, Kybernetes 33 (2004) 247-254.
    [71] S.F. Su, C.B. Lin, Y.T. Hus, A high precision global prediction approach based on local prediction approaches, IEEE Trans. Syst. Man Cybern. – Part C: Appl. Rev. 32 (2002) 416-425.

    無法下載圖示 全文公開日期 2022/08/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE