簡易檢索 / 詳目顯示

研究生: 潘智偉
Jhih-Wei Pan
論文名稱: 能夠到達數個指定等向性位置之機器人合成之研究
Synthesis of 2-DOF and 3-DOF Manipulators That Can Reach Multiple Isotropic Positions
指導教授: 蔡高岳
Kao-yueh Tsai
口試委員: 王勵群
Li-chun Wang
石伊蓓
Yi-pei Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 101
中文關鍵詞: 操控性機器人等向性位置
外文關鍵詞: Dexterity, Manipulator, Isotropic Position
相關次數: 點閱:128下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工作空間及操控性為設計機器人之兩個重要參考指標,而等向性則是目前在操控性方面最多學術論文集中探討之焦點。大多數研究等向性之論文是以得到一個等向性構形為設計目標。探討能夠到達兩個或兩個以上之等向性構形之論文數量並不多,至於能夠到達數個指定等向性位置之機器人合成,目前則無這方面之研究。本文首先研究各種不同類型之機器人理論上能夠到達幾個指定位置,其次提出合成方法設計能夠到達數個指定位置之等向性機器人。以傳統方法合成所得到之機器人很有可能因為具有不合理之尺寸而不具實用價值,因此本文將另外提出合成實用型機器人之方法。對於無法到達數個指定位置之某些類型之機器人,其合成目標將為使各指定位置之條件數或等向性指數盡量接近理論之最佳值。


    Workspace and dexterity are two of the most important design criteria in developing manipulators. For dexterity, many researchers proposed methods to develop manipulators that can reach one isotropic configuration where the condition number or conditioning index yields the optimum value of unity. Only a few papers study how to develop manipulators that can reach multiple isotropic configurations, and so far no researcher has investigated the synthesis of isotropic manipulators. This paper first studies how many specified positions, in theory, can be reached by different types of manipulators. Methods for synthesis of manipulators are then proposed to develop isotropic manipulators that can reach multiple specified positions. To avoid obtaining unpractical designs with unreasonable dimensions by traditional synthesis methods, several different approaches are presented to develop practical isotropic manipulators. For some special types of manipulators that cannot reach multiple positions, the methods will develop manipulators with condition number or conditioning index close to the optimum value at the specified positions.

    中文摘要......I 英文摘要......II 誌謝......III 目錄...... 圖表目錄...... 第一章 緒論......1 1.1 研究背景及目的......1 1.2 文獻回顧......1 1.3 論文架構......5 第二章 理論基礎......7 2.1 D - H連桿參數......7 2.2 D - H齊次轉換矩陣......8 2.3 賈氏矩陣......9 2.4 條件數......10 2.5 等向性指數......11 2.6 平面外接圓方程式......12 2.7 空間外接圓參數式......16 2.8 線外一點到直線之距離......19 第三章 平面二自由度等向性串聯式機器人......21 3.1 位移方程式......21 3.2 賈氏矩陣......25 3.3 拘束條件......26 3.4 等向性判別式......26 3.5 能夠到達幾個指定位置......28 3.6 數值範例......29 第四章 到達數個指定位置之平面二自由度等向性串聯式機器人......34 4.1 到達數個指定位置之平面二自由度等向性串聯式機器人......34 4.2 數值範例......38 第五章 到達數個指定位置之空間三自由度等向性串聯式機器人......49 5.1 位移方程式......49 5.2 賈氏矩陣......53 5.3 等向性判別式......54 5.4 能夠到達幾個指定位置......56 5.5 空間三自由度串聯式機器人之合成......57 5.6 到達數個指定位置之空間三自由度等向性串聯式機器人......61 5.7 數值範例......67 第六章 結論與建議......82 參考文獻......85 附錄......88 作者簡介......101

    [1] Salisbury, J. K., and Craig, J. T., ‘‘Articulated Hands: Force Control and Kinematic Issues’’, International Journal of Robotics Research, Vol. 1, No. 1, pp. 4-17. (1982)
    [2] Yoshikawa, T., ‘‘Analysis and Control of Robot Manipulators with Redundancy’’, Robotics Research: The First International Symposium, MIT Press, pp. 735-747. (1984)
    [3] Yoshikawa, T., ‘‘Dynamic Manipulability of Robot Manipulators’’, IEEE International Conference on Robotics and Automation, pp. 1033-1038. (1985)
    [4] Klein, C. A., and Miklos, T. A., ‘‘Spatial Robotic Isotropy’’, International Journal of Robotics Research, Vol. 10, No. 4, pp. 426-437. (1991)
    [5] Angeles, J., ‘‘The Design of Isotropic Manipulator Architectures in the Presence of Redundancies’’, International Journal of Robotics Research, Vol. 11, No. 3, pp. 196-201. (1992)
    [6] Gosselin, C., and Angeles, J., ‘‘The Optimum Kinematic Design of a Planar Three-Degree-of-Freedom Parallel Manipulator’’, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, pp. 35-41. (1988)
    [7] Gosselin, C., and Angeles, J., ‘‘The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator’’, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 111, pp. 202-207. (1989)
    [8] Pittens, K. H., and Podhorodeski, R. P., ‘‘A Family of Stewart Platforms with Optimal Dexterity’’, Journal of Robotic Systems, Vol. 10, No. 4, pp. 463-479. (1993)
    [9] Stoughton, R. S., and Arai, T., ‘‘A Modified Stewart Platform Manipulator with Improved Dexterity’’, IEEE Transactions on Robotics and Automation, Vol. 9, No. 2, pp. 166-173. (1993)
    [10] Zanganeh, K. E., and Angeles. J., ‘‘Kinematic Isotropy and the Optimum Design of Parallel Manipulators’’, International Journal of Robotics Research, Vol. 16, No. 2, pp. 185-197. (1997)
    [11] Tsai, K. Y., and Huang, K. D., ‘‘The Design of Isotropic 6-DOF Parallel Manipulators using Isotropy Generators’’, Mechanism and Machine Theory, Vol. 38, No. 11, pp. 1199-1214. (2003)
    [12] Tsai, K. Y., and Zhou, S. R., ‘‘The Optimum Design of 6-DOF Isotropic Parallel Manipulators’’, Journal of Robotic Systems, Vol. 22, No. 6, pp. 333-340. (2005)
    [13] Tsai, K. Y., and Wang, Z. W., ‘‘The Design of Redundant Isotropic Manipulators with Special Link Parameters’’, Robotica, Vol. 23, No. 2, pp. 231-237. (2005)
    [14] Tsai, K. Y., Lee, T. K., and Jang, Y. S., ‘‘A New Class of Isotropic Generators for Developing 6-DOF Isotropic Manipulators’’, Robotica, Vol. 26, No. 5, pp. 619-625. (2008)
    [15] Kircanski, M., ‘‘Kinematic Isotropy and Optimal Kinematic Design of Planar Manipulators and a 3-DOF Spatial Manipulator’’, International Journal of Robotics Research, Vol. 15, No. 1, pp. 61-77. (1996)
    [16] Tsai, K. Y., Lin, P. Y., and Lee, T. K., ‘‘4R Spatial and 5R Parallel Manipulators That Can Reach Maximum Number of Isotropic Positions’’, Mechanism and Machine Theory, Vol. 43, No. 1, pp. 68-79. (2008)

    無法下載圖示 全文公開日期 2015/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE