簡易檢索 / 詳目顯示

研究生: 蕭嘉葳
Chia-Wei Hsiao
論文名稱: 仿生奈米轉印結構之表面增強拉曼晶片於生醫及環境檢測之應用
Fabrication of Bionic Nanostructures Replica of Surface-Enhanced Raman Scattering Chips for Biomedical and Environmental Detection
指導教授: 楊銘乾
Ming-Chien Yang
劉定宇
Ting-Yu Liu
口試委員: 楊銘乾
Ming-Chien Yang
劉定宇
Ting-Yu Liu
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 73
中文關鍵詞: 熱蒸鍍表面增強拉曼散射(SERS)檢測仿生奈米結構轉印銀奈米陣列環境污染檢測
外文關鍵詞: thermal evaporation, surface-enhanced Raman scattering (SERS) detection, bionic nanostructures replica, silver nanoarrays, environmental pollution detection
相關次數: 點閱:660下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著人類對於食品安全及環境污染日漸重視,能夠快速檢測的需求也與日俱增。表面增強拉曼散射(SERS)是個備受關注的分析技術,此技術是結合貴金屬奈米顆粒陣列及拉曼光譜的“指紋”和快速感測的技術,該方法常用於醫療、農業及環境檢測。藉由調整銀或金等貴金屬奈米粒子尺寸及間距,可控制SERS訊號之強度及穩定性。仿生3D規則結構可以誘導雷射光在3D結構中有多次的反射,以增加SERS強度;因此,本研究是利用天然的蟬翼來當作模板,在蟬翼上進行銀奈米粒子之熱蒸鍍處理,其中具有3D規則結構的蟬翼,有易於獲得、規則排列的奈米陣列、低成本、超疏水、等優異性能。但因蟬翼來源的不確定性及缺乏可撓性,因此本研究也利用了天然蟬翼的結構當作仿生模板來進行翻印,打造出可撓式的仿生結構SERS基板,最後本研究成功地複製了蟬翼極小的奈米錐形結構。藉由蒸鍍25nm銀奈米粒子,可獲得最佳之SERS訊號以及高靈敏度的檢測極限(維生素D3檢測極限:10-10M)。其可撓的特性也可以實際應用在彎曲的表面上,能夠靈敏且快速的檢測出低濃度的水污染物及生物分子,例如:羅丹明6G及農藥巴拉刈(paraquat)。


    In recent years, as human beings pay more attention to food safety and environmental pollution, the demand for rapid detection is also increasing. Surface enhanced Raman scattering (SERS) is a very attractive analytical technology, which combines the "fingerprint" and rapid sensing of noble metal nanoparticle arrays and Raman spectroscopy. This method is commonly used in medical, agricultural, and environmental detection. The intensity and reproducibility of SERS signal can be manipulated by adjusting the size and interparticle gap of the silver or gold nanoparticles. Bionic 3D regular structure can induce multiple reflections of laser light in 3D structure to increase SERS intensity; Therefore, in this study, natural cicada wings were used as templates, and silver nanoparticles were thermally evaporated on cicada wings. Cicada wings with 3D regular structure have excellent properties such as easy to obtain, regularly arranged nano arrays, low cost, superhydrophobic, and so on. However, due to the uncertainty of the source of cicada wings and the lack of flexibility, this study also used the structure of natural cicada wings as a bionic template to reproduce, creating a flexible bionic structure SERS substrate. Finally, this study successfully replicated the tiny nano conical structure of cicada wings. By depositing 25nm silver nanoparticles, the optimal SERS signal and high sensitivity detection limit (detection limit of vitamin D3: 10-10M) can be demonstrated. Its flexible properties can also be applied in the curved surfaces, which can sensitively and quickly detect low concentrations of water pollutants and biomolecules, such as rhodamine 6G and pesticide paraquat.

    誌謝 III 中文摘要 IV 圖目錄 IX 表目錄 XIII 第一章 緒論(Introduction) 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 (Literature) 3 2.1 金屬奈米粒子 3 2.1.1 銀奈米粒子簡介 3 2.1.2 銀奈米粒子沉積方法 4 2.2 生物結構 7 2.2.1 生物結構之特性 7 2.2.2 仿生物結構之方法 10 2.3 聚二甲基矽氧烷(PDMS) 13 2.3.1聚二甲基矽氧烷簡介 13 2.3.2 聚二甲基矽氧烷應用 14 2.4 NOA膠應用於微奈米結構 15 2.4.1 NOA 膠簡介 15 2.4.2 NOA 膠轉印微奈米結構之應用 16 2.5 光阻劑應用於微奈米結構 17 2.5.1光阻劑簡介 17 2.5.2光阻劑的應用 17 2.6 拉曼光譜 18 2.6.1拉曼光譜的原理 18 2.6.2表面增強拉曼光譜簡介 20 第三章 實驗 (Experiment) 25 3.1實驗材料 25 3.2實驗設備 26 3.3 實驗流程 27 3.4 實驗原理及方法 28 3.4.1原理 28 3.4.2實驗設計 28 3.4.3 基板製作方式 29 第四章 結果討論 (Results and Discussion) 31 4.1 蟬翼蒸鍍銀奈米陣列基板 (CW-Ag) 31 4.1.1 水接觸角 (Contact angle) 31 4.1.2 X光繞射分析 (XRD) 32 4.1.3 X光能量散布分析儀(SEM /EDS) 33 4.1.4 場發射掃描式電子顯微鏡 (FE-SEM) 33 4.1.5 表面增強拉曼光譜 (SERS) 34 4.1.6 時域有限差分法(Finite-Difference Time-Domain, FDTD) 37 4.2 仿蟬翼結構之可撓式基板(NOA positive-Ag) 41 4.2.1 光繞射分析 (XRD) 41 4.2.2 X光能量散布分析儀(EDS) 42 4.2.3 場發射掃描式電子顯微鏡 (FE-SEM) 43 4.2.4 表面增強拉曼光譜 (SERS) 44 4.2.5 時域有限差分法(Finite-Difference Time-Domain, FDTD) 46 第五章 結論 53 第六章 參考文獻 54

    [1] Y.-W. Cheng, C.-W. Hsiao, Z.-L. Zeng, W.-L. Syu, T.-Y. Liu, “The interparticle gap manipulation of Au-Ag nanoparticle arrays deposited on flexible and atmospheric plasma-treated PDMS substrate for SERS detection,” Surface and Coatings Technology, vol. 389, pp. 125653, 2020.
    [2] W.-L. Syu, Y.-H. Lin, A. Paliwal, K.-S. Wang, T.-Y. Liu, “Highly sensitive and reproducible SERS substrates of bilayer Au and Ag nano-island arrays by thermal evaporation deposition,” Surface and Coatings Technology , vol. 350, pp. 823-830, 2018.
    [3] I. Lachebi, A. Fedala, T. Djenizian, T. Hadjersi, M. Kechouane, “Morphological and optical properties of aluminum nanoparticles deposited by thermal evaporation on heated substrates,” Surface and Coatings technology, vol. 343, pp. 160-165, 2018.
    [4] L. Guo, H. Cao, L. Cao, N. Li, A. Zhang, Z. Shang, T. Jiao, H. Liu, and M. Wang, “Improve optical properties by modifying Ag nanoparticles on a razor clam SERS substrate,” Optics Express, vol. 29, no. 4, pp. 5152-5165, 2021.
    [5] A. Zhang, L. Guo, N. Li, Y. Zhu, T. Jiao, and M. Wang, “Research on the Raman properties of NiFe/cicada wing composite SERS platform modified by silver nanoparticles,” Current Applied Physics, vol. 25, pp. 24-32, 2021.
    [6] M. Wang, X. Yan, G. Shi, Z. Shang, A. Zhang, and W. Ma, “Optical properties of Ag@ cicada wing substrate deposited by Ag nanoparticles,” Current Applied Physics, vol. 20, no. 11, pp. 1253-1262, 2020.
    [7] S. Nair, J. Gomez-Cruz, G. Ascanio, A. Docoslis, R. G. Sabat, and C. Escobedo, “Cicada Wing Inspired template-stripped SERS active 3D metallic nanostructures for the detection of toxic substances,” Sensors, vol. 21, no. 5, pp. 1699, 2021.
    [8] B. An, M. Li, J. Wang, C. Li, “Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals,” Frontiers of Chemical Science and Engineering, vol. 10, no. 3, pp. 360-382, 2016.
    [9] Y. W. Chen, T. Y. Liu, P. J. Chen, P. H. Chang, and S. Y. Chen, “A high‐sensitivity and low‐power theranostic nanosystem for cell SERS imaging and selectively photothermal therapy using anti‐EGFR‐conjugated reduced graphene oxide/mesoporous silica/AuNPs nanosheets,” Small, vol. 12, no. 11, pp. 1458-1468, 2016.
    [10] H.-Y. Chen, M.-H. Lin, C.-Y. Wang, Y.-M. Chang, and S. Gwo, “Large-scale hot spot engineering for quantitative SERS at the single-molecule scale,” Journal of the American Chemical Society vol. 137, no. 42, pp. 13698-13705, 2015.
    [11] Y.-W. Wang, K.-C. Kao, J.-K. Wang, and C.-Y. Mou, “Large-scale uniform two-dimensional hexagonal arrays of gold nanoparticles templated from mesoporous silica film for surface-enhanced Raman spectroscopy,” The Journal of Physical Chemistry C, vol. 120, no. 42, pp. 24382-24388, 2016.
    [12] X.-H. Pham, E. Hahm, H.-M. Kim, S. Shim, T. H. Kim, D. H. Jeong, Y.-S. Lee, and B.-H. Jun, “Silver nanoparticle-embedded thin silica-coated graphene oxide as an SERS substrate,” Nanomaterials, vol. 6, no. 10, pp. 176, 2016.
    [13] B. Vlčková, M. Moskovits, I. Pavel, K. Šišková, M. Sládková, and M. Šlouf, “Single-molecule surface-enhanced Raman spectroscopy from a molecularly-bridged silver nanoparticle dimer,” Chemical Physics Letters, vol. 455, no. 4-6, pp. 131-134, 2008.
    [14] J. P. Camden, J. A. Dieringer, Y. Wang, D. J. Masiello, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Probing the structure of single-molecule surface-enhanced Raman scattering hot spots,” Journal of the American Chemical Society, vol. 130, no. 38, pp. 12616-12617, 2008.
    [15] G.-S. Jang, D.-Y. Kim, and N.-M. Hwang, “The effect of charged Ag nanoparticles on thin film growth during DC magnetron sputtering,” Coatings, vol. 10, no. 8, pp. 736, 2020.
    [16] B. Wang, S. Wei, L. Guo, Y. Wang, Y. Liang, W. Huang, F. Lu, X. Chen, F. Pan, B. Xu, “Effect of sputtering power on microstructure and corrosion properties of TiO2 films deposited by reactive magnetron sputtering,” Journal of Materials Research and Technology, 2022.
    [17] S.-K. Wang, W.-H. Yang, Y.-P. Wang, G.-H. Zhao, S.-S. Zhan, D. Wang, B. Tang, and M.-D. Bao, “Effect of target grain size on target sputter etching morphology and performance,” Vacuum, vol. 201, pp. 111083, 2022.
    [18] S.-R. Bae, D. Heo, and S. Kim, “Recent progress of perovskite devices fabricated using thermal evaporation method: Perspective and outlook,” Materials Today Advances, vol. 14, pp. 100232, 2022.
    [19] A. Hussain, R. Ahmed, N. Ali, N. M. AbdEl-Salam, K. bin Deraman, Y. Fu, “Synthesis and characterization of thermally evaporated copper bismuth sulphide thin films,” Surface and Coatings Technology, vol. 320, pp. 404-408, 2017.
    [20] S. Chander, and M. Dhaka, “Optical and structural constants of CdS thin films grown by electron beam vacuum evaporation for solar cells,” Thin Solid Films, vol. 638, pp. 179-188, 2017.
    [21] G. Tong, X. Geng, Y. Yu, L. Yu, J. Xu, Y. Jiang, Y. Sheng, Y. Shi, and K. Chen, “Rapid, stable and self-powered perovskite detectors via a fast chemical vapor deposition process,” RSC advances, vol. 7, no. 30, pp. 18224-18230, 2017.
    [22] F. G. Aras, A. Yilmaz, H. G. Tasdelen, A. Ozden, F. Ay, N. K. Perkgoz, and A. J. Yeltik, “A review on recent advances of chemical vapor deposition technique for monolayer transition metal dichalcogenides (MX2: Mo, W; S, Se, Te),” Materials Science in Semiconductor Processing, vol. 148, pp. 106829, 2022.
    [23] C. Neinhuis, and W. Barthlott, “Characterization and distribution of water-repellent, self-cleaning plant surfaces,” Annals of botany, vol. 79, no. 6, pp. 667-677, 1997.
    [24] Z. Guo, W. Liu, B.-L. Su, “Superhydrophobic surfaces: from natural to biomimetic to functional,” Journal of colloid and interface science , vol. 353, no. 2, pp. 335-355, 2011.
    [25] M. Zhang, S. Feng, L. Wang, and Y. Zheng, “Lotus effect in wetting and self-cleaning,” Biotribology, vol. 5, pp. 31-43, 2016.
    [26] T. Nørgaard, and M. Dacke, “Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles,” Frontiers in zoology, vol. 7, no. 1, pp. 1-8, 2010.
    [27] J. Ju, H. Bai, Y. Zheng, T. Zhao, R. Fang, and L. Jiang, “A multi-structural and multi-functional integrated fog collection system in cactus,” Nature communications, vol. 3, no. 1, pp. 1-6, 2012.
    [28] W. Ma, Y. Ding, M. Zhang, S. Gao, Y. Li, C. Huang, and G. Fu, “Nature-inspired chemistry toward hierarchical superhydrophobic, antibacterial and biocompatible nanofibrous membranes for effective UV-shielding, self-cleaning and oil-water separation,” Journal of hazardous materials, vol. 384, pp. 121476, 2020.
    [29] C. Zhang, Y. Zhang, X. Xiao, G. Liu, Z. Xu, B. Wang, C. Yu, R. H. Ras, and L. Jiang, “Efficient separation of immiscible oil/water mixtures using a perforated lotus leaf,” Green Chemistry, vol. 21, no. 24, pp. 6579-6584, 2019.
    [30] M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, and F. De Angelis, “3D nanostar dimers with a sub‐10‐nm gap for single‐/few‐molecule surface‐enhanced Raman scattering,” Advanced Materials, vol. 26, no. 15, pp. 2353-2358, 2014.
    [31] H. Xiaoye, M. Guowen, X. Wei, H. Fangming, S. Kexi, X. Qiaoling, W. Zhaoming, and H. Qing, “Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO {sub 2} film as sensitive and reproducible SERS substrates,” Nanotechnology (Print), vol. 23, 2012.
    [32] K. Sivashanmugan, J.-D. Liao, B. H. Liu, C.-K. Yao, S.-C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensors and Actuators B: Chemical, vol. 207, pp. 430-436, 2015.
    [33] P. Kumar, R. Khosla, M. Soni, D. Deva, S. Sharma, “A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template,” Sensors and Actuators B: Chemical, vol. 246, pp. 477-486, 2017.
    [34] L. Wang, K. Yin, Z. Zhu, Q. Deng, Q. Huang, “Femtosecond laser engraving micro/nanostructured poly (ether-ether-ketone) surface with superhydrophobic and photothermal ability,” Surfaces and Interfaces, vol. 31, pp. 102013, 2022.
    [35] E. Stratakis, J. Bonse, J. Heitz, J. Siegel, G. Tsibidis, E. Skoulas, A. Papadopoulos, A. Mimidis, A.-C. Joel, P. Comanns, “Laser engineering of biomimetic surfaces,” Materials Science and Engineering: R: Reports, vol. 141, pp. 100562, 2020.
    [36] M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chemical reviews, vol. 99, no. 7, pp. 1935-1962, 1999.
    [37] K. Liu, Y. Tian, and L. Jiang, “Bio-inspired superoleophobic and smart materials: design, fabrication, and application,” Progress in Materials Science, vol. 58, no. 4, pp. 503-564, 2013.
    [38] Y. Lai, F. Pan, C. Xu, H. Fuchs, and L. Chi, “In situ surface‐modification‐induced superhydrophobic patterns with reversible wettability and adhesion,” Advanced Materials, vol. 25, no. 12, pp. 1682-1686, 2013.
    [39] S. Chattopadhyay, L.-C. Chen, K.-H. J. Chen, “Nanotips: growth, model, and applications,” Critical Reviews in Solid State and Materials Sciences, vol. 31, no. 1-2, pp. 15-53, 2006.
    [40] C.-Y. Lin, K.-Y. A. Lin, T.-W. Yang, Y.-C. Chen, H. Yang, “Self-assembled hemispherical nanowell arrays for superhydrophobic antireflection coatings,” Journal of colloid and interface science, vol. 490, pp. 174-180, 2017.
    [41] A. Zahid, B. Dai, R. Hong, and D. Zhang, “Optical properties study of silicone polymer PDMS substrate surfaces modified by plasma treatment,” Materials Research Express, vol. 4, no. 10, pp. 105301, 2017.
    [42] S. S. Dhanabalan, T. Arun, G. Periyasamy, N. Dineshbabu, N. Chidhambaram, S. R. Avaninathan, and M. F. Carrasco, “Surface engineering of high-temperature PDMS substrate for flexible optoelectronic applications,” Chemical Physics Letters, vol. 800, pp. 139692, 2022.
    [43] D. C. Duffy, J. C. McDonald, O. J. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Analytical chemistry,vol. 70, no. 23, pp. 4974-4984, 1998.
    [44] G. G. Morbioli, N. C. Speller, and A. M. Stockton, “A practical guide to rapid-prototyping of PDMS-based microfluidic devices: a tutorial,” Analytica Chimica Acta, vol. 1135, pp. 150-174, 2020.
    [45] S. Nam, M. Song, D.-H. Kim, B. Cho, H. M. Lee, J.-D. Kwon, S.-G. Park, K.-S. Nam, Y. Jeong, and S.-H. Kwon, “Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode,” Scientific reports, vol. 4, no. 1, pp. 1-7, 2014.
    [46] H. S. Kang, J. Choi, W. Cho, H. Lee, D. Lee, and H.-T. Kim, “Silver nanowire networks embedded in a cure-controlled optical adhesive film for a transparent and highly conductive electrode,” Journal of Materials Chemistry C, vol. 4, no. 41, pp. 9834-9840, 2016.
    [47] B.-J. Kim, J. H. Jang, J. Kim, K. S. Oh, E. Y. Choi, and N. J. Park, “Efficiency and stability enhancement of organic–inorganic perovskite solar cells through micropatterned Norland Optical Adhesive and polyethylene terephthalate encapsulation,” Materials Today Communications, vol. 20, pp. 100537, 2019.
    [48] H. Chen, P. Jia, C. Chen, L. Qin, Y. Chen, Y. Huang, Y. Ning, and L. Wang, “Narrow linewidth DBR laser based on high order Bragg grating defined by i-line lithography,” Optics Communications, vol. 445, pp. 296-300, 2019.
    [49] M. Zhang, S. Jiang, Y. Gao, J. Nie, and F. Sun, “Design of a disulfide bond-containing photoresist with extremely low volume shrinkage and excellent degradation ability for UV-nanoimprinting lithography,” Chemical Engineering Journal, vol. 390, pp. 124625, 2020.
    [50] J.-H. Min, A. Bagal, J. Mundy, C. Oldham, B.-I. Wu, G. Parsons, and C.-H. Chang, “Fabrication and design of metal nano-accordion structures using atomic layer deposition and interference lithography,” Nanoscale, vol. 8, no. 9, pp. 4984-4990, 2016.
    [51] R. B. Miles, W. R. Lempert, J. N. Forkey, “Laser rayleigh scattering,” Measurement Science and Technology, vol. 12, no. 5, pp. R33, 2001.
    [52] K. V. Chance, and R. J. Spurr, “Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum,” Applied optics, vol. 36, no. 21, pp. 5224-5230, 1997.
    [53] J.-X. Cheng, and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications," The Journal of Physical Chemistry B, 3, ACS Publications, 2004, pp. 827-840.
    [54] C. L. Evans, and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annual review of analytical chemistry, vol. 1, no. 1, pp. 883, 2008.
    [55] M. Tanaka, and R. Young, “Review Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers,” Journal of Materials Science, vol. 41, no. 3, pp. 963-991, 2006.
    [56] G. Placzek, Rayleigh-streuung und Raman-effekt, Akademische Verlagsgesellschaft, 1934.
    [57] P. Graves, and D. J. S. Gardiner, “Practical raman spectroscopy,” Springer, vol. 10, pp. 978-3, 1989.
    [58] M. Fleischmann, P. J. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chemical physics letters, vol. 26, no. 2, pp. 163-166, 1974.
    [59] W. E. Doering, and S. J. Nie, “Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement,” The Journal of Physical Chemistry B, vol. 106, no. 2, pp. 311-317, 2002.
    [60] N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays,” Applied Physics Letters, vol. 82, no. 18, pp. 3095-3097, 2003.
    [61] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Physical review letters, vol. 78, no. 9, pp. 1667, 1997.
    [62] D. L. Jeanmaire, R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” Journal of electroanalytical chemistry and interfacial electrochemistry, vol. 84, no. 1, pp. 1-20, 1977.
    [63] M. G. Albrecht, and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” Journal of the american chemical society, vol. 99, no. 15, pp. 5215-5217, 1977.
    [64] J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum plasmonics: optical properties and tunability of metallic nanorods,” ACS nano, vol. 4, no. 9, pp. 5269-5276, 2010.
    [65] F. Hubenthal, “Does the excitation of a plasmon resonance induce a strong chemical enhancement in SERS? On the relation between chemical interface damping and chemical enhancement in SERS,” Applied Physics B, vol. 117, no. 1, pp. 1-5, 2014.
    [66] F. J. García-Vidal, and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Physical Review Letters, vol. 77, no. 6, pp. 1163, 1996.
    [67] V. Kukushkin, A. B. Van’kov, and I. Kukushkin, “Long-range manifestation of surface-enhanced Raman scattering,” JETP letters, vol. 98, no. 2, pp. 64-69, 2013.
    [68] E. Hao, and G. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” The Journal of chemical physics, vol. 120, no. 1, pp. 357-366, 2004.
    [69] P. G. Etchegoin, and E. Le Ru, “A perspective on single molecule SERS: current status and future challenges,” Physical Chemistry Chemical Physics, vol. 10, no. 40, pp. 6079-6089, 2008.
    [70] C.-Y. Chiang, T.-Y. Liu, Y.-A. Su, C.-H. Wu, Y.-W. Cheng, H.-W. Cheng, and R.-J. Jeng, “Au nanoparticles immobilized on honeycomb-like polymeric films for surface-enhanced Raman scattering (SERS) detection,” Polymers, vol. 9, no. 3, pp. 93, 2017.
    [71] N. Ma, X.-Y. Zhang, W. Fan, S. Guo, Y. Zhang, Y. Liu, L. Chen, Y. Jung, and B. Spectroscopy, “SERS study of Ag/FeS/4-MBA interface based on the SPR effect,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 219, pp. 147-153, 2019.
    [72] S. Zhao, B. Wei, X. He, Y. Li, and X. Wei, “Hybrid FDTD algorithm for electromagnetic analysis of fine structures,” Results in Physics, vol. 31, pp. 105017, 2021.
    [73] M.-H. Lin, L. Sun, F. Kong, and M. Lin, “Rapid detection of paraquat residues in green tea using surface-enhanced Raman spectroscopy (SERS) coupled with gold nanostars,” Food Control, vol. 130, pp. 108280, 2021.
    [74] W. Kim, J. Park, W. Kim, S. Jo, M. Kim, C. Kim, H. Park, D. Bang, W. Lee, J. Park, “Bio-inspired Ag nanovilli-based sandwich-type SERS aptasensor for ultrasensitive and selective detection of 25-hydroxy vitamin D3,” Biosensors and Bioelectronics, vol. 188, pp. 113341, 2021.
    [75] K.-S. Wang, Z.-L. Tseng, C.-Y. Liu, T.-Y. Kuan, R.-J. Jeng, M.-C. Yang, Y.-L. Wang, T.-Y. Liu, “Novel strategy for flexible and super-hydrophobic SERS substrate fabricated by deposited gold nanoislands on organic semiconductor nanostructures for bio-detection,” Surface and Coatings Technology, vol. 435, pp. 128251, 2022.

    無法下載圖示 全文公開日期 2024/08/04 (校內網路)
    全文公開日期 2027/08/04 (校外網路)
    全文公開日期 2027/08/04 (國家圖書館:臺灣博碩士論文系統)
    QR CODE