簡易檢索 / 詳目顯示

研究生: 江長耘
CHANG-YUN CHIANG
論文名稱: 探討以甲基丙烯酸甲酯改性不飽和聚酯樹脂作為液化土壤改良材料之可行性評估
Discussion on the feasibility evaluation of methyl methacrylate modified unsaturated polyester resin as a material for liquefied soil improvement
指導教授: 李安叡
An-Jui Li
口試委員: 洪汶宜
Wen-Yi Hung
鄭智嘉
Chih-Chia Cheng
鄭世豪
Shih-Hao Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 178
中文關鍵詞: 滲透灌漿地盤改良振動台試驗不飽和聚酯樹脂甲基丙烯酸甲酯
外文關鍵詞: permeation grouting, ground improvement, shaking table test, unsaturated polyester resin, methyl methacrylate
相關次數: 點閱:406下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

市區內的建築物彼此緊密林立,地下管線複雜密布,可以有效達到液化防治之目的且不擾民之工法相對有限。而滲透灌漿工法對於土層結構的干擾非常小,屬於地盤改良工法中常見且可以應用於大面積範圍的灌漿方式。故本研究以滲透灌漿工法作為液化防治之對策,使用本研究研發之甲基丙烯酸甲酯(MMA)改性之不飽和聚酯樹脂(UP)混合溶液作為高分子化學材料灌漿液,藉由各項常見應用於灌漿液性質檢測之試驗探討此項高分子化學材料灌漿液之基本性能。於相同土壤體積情況下,比較1.5倍和3倍砂土孔隙體積灌漿量注入之改良土樣試體的物理性質差異,並以小型模擬砂箱灌注試驗觀測改良土體於含水砂土層中之實際膠結硬固情形,以及透過振動台砂箱液化試驗觀察作為附加載重物之民房模型與灌漿液改良土材質基礎模型於疏鬆含水砂土層液化後之沉陷及傾倒行為,作為化學灌漿液對於液化抵抗成效之佐證。各項試驗結果皆顯示UP-MMA灌漿液具有優良之工作性與止水性,滲透灌漿改良後之砂土皆具備大於40 MPa之單壓強度,並且能有效抵抗膨潤之影響,能夠使地盤改良的效果同時滿足液化防治與土壤承載力提升,達到永久性地盤改良之目的。


The buildings in the urban area are closely connected with each other, and the underground pipelines are complex and dense. There are relatively limited construction methods that can effectively achieve the purpose of soil liquefaction prevention and control without disturbing the residents. The permeation grouting method has very little interference with the soil structure. It is also a common grouting method for the ground improvement method which can be applied to a large area. Therefore, this study uses the permeation grouting method as a countermeasure for soil liquefaction prevention, and uses the methyl methacrylate (MMA) modified unsaturated polyester resin (UP) mixed solution developed in this study as the polymer chemical grouting solution. The basic performance of this polymer chemical grouting solution is explored by various tests commonly used in the detection of grouting solution properties. In the case of the same soil volume, the difference in physical properties of the improved soil samples injected with 1.5 times and 3 times the sand pore volume grouting volume were compared. The actual cementation and hardening of the improved soil in the loose water-contain sand layer were observed by a grouting test in the small-scale simulated sandbox. And then, through the soil liquefaction test by shaking table test, the subsidence and dumping behavior of the residential house model and the grouting-solution-improved soil material foundation model as additional loads were observed after the loose water-contain sand layer liquefied, as the evidence of the effectiveness of chemical grouting solution on liquefaction resistance. All of the test results show that the UP-MMA grouting solution has excellent workability and waterproof performance. All the sand sample improved by permeation grouting has a uniaxial compressive strength greater than 40 MPa and has effective resistance to the influence of swelling. Using UP-MMA grouting by permeation grouting can make the effect of ground improvement satisfy the liquefaction prevention and soil bearing capacity improvement at the same time, achieving the purpose of permanent site improvement.

摘要 I Abstract II 目錄 IV 表目錄 VII 圖片目錄 IX 符號對照表 XIV 1 第一章 緒論 1 1.1. 研究動機與目的 1 1.2. 研究範圍與方法 2 1.3. 論文內容與構架 3 2 第二章 文獻回顧 6 2.1. 土壤液化定義 6 2.1.1. 液化機制 6 2.1.2. 影響液化之因素 7 2.2. 灌漿工法 9 2.3. 滲透灌漿 10 2.3.1. 灌漿液對於土壤之可灌度 11 2.3.2. 滲透灌漿工法中灌漿液之主要考量參數 11 2.4. 灌漿材料 12 2.4.1. 高分子系灌漿材料 13 2.4.2. 不飽和聚酯樹脂(UP) 13 2.4.3. 甲基丙烯酸甲酯(MMA) 16 2.4.4. 過氧化丁酮(MEKP) 17 2.5. 振動台砂箱液化試驗 17 2.5.1. 振動台砂箱 17 2.5.2. 飽和砂土受振後之超額孔隙水壓激發與消散 20 3 第三章 試驗架構 21 3.1. 試驗土樣 21 3.1.1. 篩分析試驗 22 3.1.2. 相對密度試驗 23 3.2. 灌漿材料 25 3.2.1. 調配方式 26 3.2.2. 黏度計試驗 26 3.2.3. 室內十字片剪試驗 28 3.3. 改良灌漿液配比土樣測試 33 3.3.1. 攪拌拌合試驗 33 3.3.2. 室內滲透灌漿試驗 34 3.3.3. 超音波試驗 39 3.3.4. 單軸壓縮試驗 42 3.3.5. 滲透試驗 43 3.3.6. 灌漿影響範圍之模型箱試驗 47 3.4. 灌漿液之碳足跡 52 3.4.1. 碳足跡與評估範圍 52 3.4.2. 灌漿液原物料之碳足跡分析 53 3.5. 單軸向1 G振動台砂箱液化試驗 55 3.5.1. 試驗使用之振動台與砂箱 55 3.5.2. 監測儀器 57 3.5.3. 試體準備 59 3.5.4. 附加載重物與基礎模型 65 3.5.5. 試驗規劃 70 4 第四章 試驗結果與分析 80 4.1. 化學灌漿液之膠凝過程分析 80 4.1.1. 灌漿液膠凝與強度分析 80 4.1.2. 起始劑濃度變化對漿液膠凝時間之影響 85 4.1.3. 溫度變化對膠凝反應之影響 89 4.2. 滲透灌漿成效評估 92 4.2.1. UP-MMA灌漿液膠體與改良土樣之抗壓強度 92 4.2.2. 改良土樣之超音波試驗與單壓強度間之結果比較 99 4.2.3. 改良土樣之滲透係數 105 4.2.4. 地下水層對滲透灌漿改良範圍的影響 107 4.3. 滲透灌漿之灌漿液碳足跡分析 114 4.4. 單軸向1 G振動台砂箱液化試驗之結果 116 4.4.1. 振動加速度與頻率對土層液化的影響 116 4.4.2. 主要液化土層之深度位置 121 4.4.3. 淺基礎與深基礎對於液化沉陷抵抗之成效 125 4.4.4. 土層中超額孔隙水壓之激發與消散 134 4.4.5. 加速度計量測結果與孔隙水壓激增之比較 148 5 第五章 結論與建議 152 5.1. 結論 152 5.2. 建議 153

1. Bolton Seed, H., Tokimatsu, K., Harder, L. F., & Chung, R. M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of geotechnical engineering, 111(12), 1425-1445.
2. Seed, H. B., & Idriss, I. M. (1971). A Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations division, 97(9), 1249-1273.
3. Sherif, M. A., Tsuchiya, C., & Ishibashi, I. (1977). Saturation effects on initial soil liquefaction. Journal of the Geotechnical Engineering Division, 103(8), 914-917.
4. Yoshimi, Y., Tanaka, K., & Tokimatsu, K. (1989). Liquefaction resistance of a partially saturated sand. Soils and foundations, 29(3), 157-162.
5. Seed, H. B., Martin, P. P., & Lysmer, J. (1975). The generation and dissipation of pore water pressures during soil liquefaction. College of Engineering, University of California.
6. Ishibashi, I., Shérif, M. A., & Cheng, W. L. (1982). The effects of soil parameters on pore-pressure-rise and liquefaction prediction. Soils and Foundations, 22(1), 39-48.
7. Seed, H. B., Mori, K. & Chan, Clarence K. (1975). Influence of seismic history of the liquefaction characteristics of sand. College of Engineering, University of California.
8. Tokimatsu, K., Yamazaki, T., & Yoshimi, Y. (1986). Soil liquefaction evaluations by elastic shear moduli. Soils and Foundations, 26(1), 25-35.
9. Zullo, R., Verdolotti, L., Liguori, B., Lirer, S., de Luna, M. S., Malara, P., & Filippone, G. (2020). Effect of rheology evolution of a sustainable chemical grout, sodium-silicate based, for low pressure grouting in sensitive areas: Urbanized or historical sites. Construction and Building Materials, 230, 117055.
10. Baker, W. H. (1982, February). Planning and performing structural chemical grouting. In Mine Induced Subsidence: Effects on Engineered Structures (pp. 515-539). ASCE.
11. Bodocsi, A., & Bowers, M. T. (1991). Permeability of acrylate, urethane, and silicate grouted sands with chemicals. Journal of Geotechnical Engineering, 117(8), 1227-1244.
12. Todaro, C. (2021). Grouting of cohesionless soils by means of colloidal nanosilica. Case Studies in Construction Materials, 15, e00577.
13. Saiyouri, N., Alaiwa, A. A., & Hicher, P. Y. (2011). Permeability and porosity improvement of grouted sand. European journal of environmental and civil engineering, 15(3), 313-333.
14. Gao, Y., Zhang, H., Huang, M., & Lai, F. (2019). Unsaturated polyester resin concrete: A review. Construction and Building Materials, 228, 116709.
15. Cousinet, S., Ghadban, A., Fleury, E., Lortie, F., Pascault, J. P., & Portinha, D. (2015). Toward replacement of styrene by bio-based methacrylates in unsaturated polyester resins. European Polymer Journal, 67, 539-550.
16. Hyun, S. H., & Yeon, J. H. (2012). Strength development characteristics of UP-MMA based polymer concrete with different curing temperature. Construction and Building Materials, 37, 387-397.
17. Fishman, K. L., Mander, J. B., & Richards Jr, R. (1995). Laboratory study of seismic free-field response of sand. Soil Dynamics and Earthquake Engineering, 14(1), 33-43.
18. Lombardi, D., Bhattacharya, S., Scarpa, F., & Bianchi, M. (2015). Dynamic response of a geotechnical rigid model container with absorbing boundaries. Soil Dynamics and Earthquake Engineering, 69, 46-56.
19. Kaniraj, S. R. (1988). Design aids in soil mechanics and foundation engineering. Tata McGraw-Hill.
20. Gao, Y., Zhang, H., Kang, H., Huang, M., & Lai, F. (2020). Road performance of liquid nitrile-butadiene rubber modified unsaturated polyester resin concrete. Construction and Building Materials, 263, 120479.
21. Gallagher, P. M. (2000). Passive site remediation for mitigation of liquefaction risk (Doctoral dissertation, Virginia Tech).
22. Prabhakaran, A., Kim, K., Orang, M. J., Qiu, Z., Ebeido, A., Zayed, M., ... & Frazao, C. (2020, February). Polymer injection and liquefaction-induced foundation settlement: a shake table test investigation. In Geo-Congress 2020: Geotechnical Earthquake Engineering and Special Topics (pp. 1-9). Reston, VA: American Society of Civil Engineers.
23. Bahadori, H., Motamedi, H., Hasheminezhad, A., & Motamed, R. (2020). Shaking table tests on shallow foundations over geocomposite and geogrid-reinforced liquefiable soils. Soil Dynamics and Earthquake Engineering, 128, 105896.
24. Yünkül, K., & Gürbüz, A. (2022). Shaking table study on seismic behavior of MSE wall with inclined backfill soils reinforced by polymeric geostrips. Geotextiles and Geomembranes, 50(1), 116-136.
25. Varghese, R. M., & Latha, G. M. (2014). Shaking table studies on the conditions of sand liquefaction. In Geo-Congress 2014: Geo-characterization and Modeling for Sustainability (pp. 1244-1253).
26. Yoshimi, Y., & Tokimatsu, K. (1977). Settlement of buildings on saturated sand during earthquakes. Soils and Foundations, 17(1), 23-38.
27. Iai, S., Tobita, T., & Nakahara, T. (2005). Generalised scaling relations for dynamic centrifuge tests. Geotechnique, 55(5), 355-362.
28. Bathurst, R. J., & Hatami, K. (1998). Seismic response analysis of a geosynthetic-reinforced soil retaining wall. Geosynthetics International, 5(1-2), 127-166.
29. Chen, D., Liu, F., Yang, F., Jing, L., Feng, W., Lv, J., & Luo, Q. (2018). Dynamic compressive and splitting tensile response of unsaturated polyester polymer concrete material at different curing ages. Construction and Building Materials, 177, 477-498.
30. Gonzalez, H. A., & Vipulanandan, C. (2007). Behavior of a sodium silicate grouted sand. In Grouting for Ground Improvement: Innovative Concepts and Applications (pp. 1-10).
31. Oyler, D. C. (1984). Use of a sodium silicate gel grout for plugging horizontal methane-drainage holes. Report of investigations/1984 (No. PB-84-181643; BM-RI-8843). Bureau of Mines, Pittsburgh, PA (USA). Pittsburgh Research Center.
32. Ko, Y. Y., Li, Y. T., Chen, C. H., Yeh, S. Y., & Hsu, S. Y. (2021). Influences of repeated liquefaction and pulse-like ground motion on the seismic response of liquefiable ground observed in shaking table tests. Engineering Geology, 291, 106234.
33. Das, B. M. (1990). Principles of geotechnical engineering. PWS.
34. Bohloli, B., Skjølsvold, O., Justnes, H., Olsson, R., Grøv, E., & Aarset, A. (2019). Cements for tunnel grouting–Rheology and flow properties tested at different temperatures. Tunnelling and Underground Space Technology, 91, 103011.
35. Fraccica, A., Spagnoli, G., Romero, E., Arroyo, M., & Gómez, R. (2022). Permeation grouting of silt-sand mixtures. Transportation Geotechnics, 100800.
36. 馬振基 (2009),高分子複合材料,國立編譯館,台北。
37. 翁作新、王明輝、陳銘鴻、何文欽 (2001),大型振動台剪力盒土壤液化試驗(I)- 大型二維剪力盒之研發,國家工程研究中心報告,報告編號:NCREE-01-011,台北。
38. 翁作新、陳家漢、彭立先、李偉誠 (2003),大型振動台剪力盒土壤液化試驗(II)-大型砂試體之準備與振動初期試驗,國家工程研究中心報告,報告編號:NCREE-03-042,台北。
39. 翁作新、陳家漢、程漢瑋、吳繼偉 (2006),大型振動台剪力盒土壤液化試驗(III)-飽和越南石英砂試體受振沉陷之探討,國家工程研究中心報告,報告編號:NCREE-06-019,台北。
40. 鐘瑞敏 (1980),砂土中黏土含量對液化潛能之影響,國立台灣大學土木工程研究所碩士論文。
41. 黃啓瑞 (2005),攪拌樁配置對軟弱黏土層島區開挖之影響,國立台灣科技大學營建工程所碩士論文。
42. 鄭毅傑 (2009),變化灌漿材料和灌漿方式對不同土壤之改良強度影響,國立台灣科技大學營建工程所碩士論文。
43. 李明威 (2016),矽溶膠灌漿液之材料性質和大地工程應用研究,國立台灣科技大學營建工程所碩士論文。
44. 劉耀鴻 (2019),運用非破壞性與破壞性試驗檢測脆性材料力學性質,國立台灣科技大學營建工程所碩士論文。
45. 彭添旺 (2019),不同構造建築物碳足跡評估比較分析,國立中興大學環境工程研究所碩士論文。

無法下載圖示 全文公開日期 2026/02/14 (校內網路)
全文公開日期 2028/02/14 (校外網路)
全文公開日期 2028/02/14 (國家圖書館:臺灣博碩士論文系統)
QR CODE