簡易檢索 / 詳目顯示

研究生: 張華生
Hua-Sheng Chang
論文名稱: 調變銅錫硫三元化合物之硫含量應用於高效率可見光二氧化碳還原與轉換之研究
Tuning sulfur molar ratio of ternary CuxSnSy (CTS) as an efficient solar fuels photocatalyst for CO2 reduction
指導教授: 戴龑
Yian Tai
陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
口試委員: 陳長謙
Chan, Sunney I
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 141
中文關鍵詞: 二氧化碳還原銅錫硫化合物硫族金屬元素化合物光觸媒
外文關鍵詞: CuxSnSy (CTS), CZTS related materials, Metal chalcogenide
相關次數: 點閱:271下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究主要探討銅錫硫三元化合物半導體材料,以相圖的角度出發,針對系統中的硫含量進行調控,以期發現不同之銅錫硫三元化合物光觸媒特性,並利用溶劑熱法進行合成以改進傳統合成法相對嚴苛的製程和生產所需的成本。在光學特性分析中發現此種材料之能隙大小與位置足以使二氧化碳還原反應合理發生;而就成分比例、晶體結構等特性分析,發現低硫量的情況下相對容易產生二次相硫化亞銅,另外,本研究亦發現銅錫硫化合物於某些參數下容易在表面形成磺酸基與氧化硫化合物,而以上兩種特徵皆可以在光觸媒特性上有所貢獻。最佳化方面,本研究發現結合銅錫硫莫耳比例為2:1:5之產物粉末,相較於其他比例,可擁有最適當尺寸之奈米花狀構造,並且擁有最大的比表面積,進而影響最終產量的變化,在氣相層析效能方面則是能將二氧化碳成功還原成甲醇、乙醛與乙醇三種產物,量子轉換效率亦可達到約0.0471%。後續若針對熱退火處理、輪廓與比表面積、結晶方位控制等方面進行最適化調控,相信能為二氧化碳還原之應用上帶來更佳之效應。


    In this work, nanoflower-like ternary CuxSnSy (CTS) semiconductor were synthesized by a novel solvothermal approach. Based on the point of view of Cu-Sn-S phase diagram, atomic ratio and crystal strcture can be changed by tuning sulfur molar ratio of CTS during the procedure of synthesis. In order to ensure that CTS can be applied on carbon dioxide reduction reaction, the nanoflower-like CTS powder will be identified by some optical analysis to define its band gap and band edge. On the other hands, from the results of composition, crystal structure and other analysis can found that in the case of low sulfur condition is easier to produce secondary phase copper(I) sulfide (Cu2S) which can enhance CTS system to produce C1 product: methanol (CH3OH). Moreover, sulfonic group (SO3H) can appear in someparameter, which can be a proton donor and proton hoppingto help acetaldehyde (CH3CHO) to convert to ethanol (C2H5OH). In optimization ofthis study, it was found that CTS215(Cu:Sn:S = 2:1:5) after 300oC annealing treatment have the most suitable size of the nanoflower-like structure, it can produce three different products including methanol, acetaldehyde and ethanol, its quantum efficiency also can achieve 0.0471%. In the future, followed by the annealing treatment, surface area control, crystal orientation control of CTS photocatalyst might be a good way for further development of carbon dioxide reduction.

    中文摘要 IV Abstract V 致謝 VI 目錄 VIII 圖目錄 XII 表目錄 XVI 名詞解釋表 XVII 第一章緒論 1  1-1前言 1  1-2研究動機與目的 4 第二章文獻回顧 5  2-1銅錫硫(CuxSnSy)三元半導體材料簡介 5   2-1-1銅錫硫(CuxSnSy)相關性質與晶體結構 6    2-1-1-1化合物性質 6    2-1-1-2晶體結構分類 8   2-1-2銅錫硫(CuxSnSy)合成方法 12   2-1-3常見的二元衍生材料 25  2-2溶劑熱法(Solvothermal method) 26   2-2-1溶劑熱法之合成優勢 26   2-2-2溶劑熱法之合成原理 26  2-3熱退火製程(Annealing treatment) 29   2-3-1 熱退火之原理與常見應用 29   2-3-2熱退火製程應用於銅錫硫(CuxSnSy)系統之影響 31  2-4二氧化碳還原技術的發展 33   2-4-1金屬氧化物型觸媒系統 39   2-4-2金屬硫化物型觸媒系統 44   2-4-3共觸媒型系統 45   2-4-4 CTS觸媒系統 48 第三章實驗設備與方法 49  3-1 儀器設備 49  3-2 實驗藥品與器材 51  3-3 實驗步驟 52   3-3-1實驗流程圖 52 3-4 實驗方法 53   3-4-1溶劑熱法(Solvothermal method)合成 53   3-4-2 離心法(Centrifugation)合成粉末 54  3-5材料鑑定與分析 55   3-5-1場發射掃描式電子顯微鏡 (Field-Emission Scanning   Electron Microscope, FE-SEM) 55   3-5-2能量色散X射線光譜(Energy Dispersive Spectroscopy,   EDS) 56   3-5-3比表面積及微孔徑分析儀(Surface Area, Micropore   Analysis) 58   3-5-4X光繞射儀 (X-ray Diffraction, XRD) 60   3-5-5拉曼振動光譜儀 (Raman Spectrum, Raman) 61   3-5-6穿透式電子顯微鏡 (Transmission Electron Microscope,   TEM) 63   3-5-7紫外-可見光光譜儀 (UV-Visible Spectroscopy) 64 3-5-8光電子量測儀原理示意圖………………………………….65   3-5-9光電子量測儀(Photoelectron Spectroscopy, AC2) 67   3-5-10 X射線光電子能譜儀(X-ray photoelectron spectroscopy,   XPS) 68  3-6二氧化碳還原系統 69   3-6-1 氣相層析儀與火焰離子偵測器(GC-FID)系統 69   3-6-2 光源系統與實驗參數 72 第四章實驗結果與討論 73  4-1 CTS三元化合物特性分析 73   4-1-1不同成分比例CTS之分析 73    4-1-1-1 輪廓比較與元素分析 75    4-1-1-2 晶體結構性質分析 79    4-1-1-3 光學性質分析 88   4-1-2 調變硫比例對CTS之影響 95  4-2 利用GC-FID系統檢測CTS光觸媒性質 96   4-2-1 生成產物與產量比較 96   4-2-2 量子轉換效率比較 98  4-3 CTS應用在二氧化碳轉換之機制 100   4-3-1 二次相的輔助與貢獻 100   4-3-2表面差異 102  4-4 CTS最佳化參數之長時間測試 109 第五章結論 111 第六章未來展望 112  6-1調變CTS退火溫度之未來研究展望 112  6-2添加表面活性劑調變CTS輪廓之未來研究展望 116 參考文獻 117

    1. Leung, D. Y. C.; Caramanna, G.; Maroto-Valer, M. M., An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews 2014,39, 426-443.
    2. Wu, X.; Yu, Y.; Qin, Z.; Zhang, Z., The Advances of Post-combustion CO2 Capture with Chemical Solvents: Review and Guidelines. Energy Procedia 2014,63, 1339-1346.
    3. Halmann, M., Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature 1978, 275, 115 - 116.
    4. Song, X.; Ji, X.; Li, M.; Lin, W.; Luo, X.; Zhang, H., A Review on Development Prospect of CZTS Based Thin Film Solar Cells. International Journal of Photoenergy 2014,2014, 1-11.
    5. Vanalakar, S. A.; Agawane, G. L.; Shin, S. W.; Suryawanshi, M. P.; Gurav, K. V.; Jeon, K. S.; Patil, P. S.; Jeong, C. W.; Kim, J. Y.; Kim, J. H., A review on pulsed laser deposited CZTS thin films for solar cell applications. Journal of Alloys and Compounds 2015,619, 109-121.
    6. Liu, X.; Feng, Y.; Cui, H.; Liu, F.; Hao, X.; Conibeer, G.; Mitzi, D. B.; Green, M., The current status and future prospects of kesterite solar cells: a brief review. Progress in Photovoltaics: Research and Applications 2016,24 (6), 879-898.
    7. 陳昶志. 二維奈米結構CuxZnySnzS之合成與性質研究探討. 2016.
    8. David Avellaneda, M. T. S. N. a. P. K. N., Cu2SnS3 and Cu4SnS4 Thin Films via Chemical Deposition for Photovoltaic Application. Journal of The Electrochemical Society 2010,157 (6) D346-D352.
    9. Mahesh P. Suryawanshi, U. V. G., Seung Wook Shin, Sachin A. Pawar, In Young Kim, Chang Woo Hong, Minhao Wu, Pramod S. Patil, Annasaheb V. Moholkar, and Jin Hyeok Kim, A Simple Aqueous Precursor Solution Processing of Earth-Abundant Cu2SnS3 Absorbers for Thin-Film Solar Cells. ACS Applied Materials & Interfaces2016,8 (18), pp 11603–11614.
    10. Li, J.; Huang, J.; Zhang, Y.; Wang, Y.; Xue, C.; Jiang, G.; Liu, W.; Zhu, C., Solution-processed Cu2SnS3thin film solar cells. Royal Society of ChemistryAdvances2016,6 (63), 58786-58795.
    11. Shen, Y.; Li, C.; Huang, R.; Tian, R.; Ye, Y.; Pan, L.; Koumoto, K.; Zhang, R.; Wan, C.; Wang, Y., Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties. Scientific Report2016,6, 32501.
    12. Zawadzki, P.; Baranowski, L. L.; Peng, H.; Toberer, E. S.; Ginley, D. S.; Tumas, W.; Zakutayev, A.; Lany, S., Evaluation of photovoltaic materials within the Cu-Sn-S family. Applied Physics Letters 2013,103 (25), 253902.
    13. Baranowski, L. L., Combinatorial development of Cu2SnS3 as an earth abundant photovoltaic absorber. 2013.
    14. Baranowski, L. L.; Zawadzki, P.; Christensen, S.; Nordlund, D.; Lany, S.; Tamboli, A. C.; Gedvilas, L.; Ginley, D. S.; Tumas, W.; Toberer, E. S.; Zakutayev, A., Control of Doping in Cu2SnS3through Defects and Alloying. Chemistry of Materials 2014,26 (17), 4951-4959.
    15. Chen, F.; Zai, J.; Xu, M.; Qian, X., 3D-hierarchical Cu3SnS4 flowerlike microspheres: controlled synthesis, formation mechanism and photocatalytic activity for H2 evolution from water. Journal of Materials Chemistry A 2013,1 (13), 4316.
    16. Lokhande, A. C.; Gurav, K. V.; Jo, E.; Lokhande, C. D.; Kim, J. H., Chemical synthesis of Cu2SnS3 (CTS) nanoparticles: A status review. Journal of Alloys and Compounds 2016,656, 295-310.
    17. Hall, S. R., Szymanski, J.T, Stewart, J.M, Kesterite Cu2(Zn Fe)SnS4 and stannite Cu2(Fe Zn)SnS4 structurally similar but distinct minerals. Canadian Mineralogist. Canadian Mineralogist 1978,16, 131-137.
    18. Onoda, M.; Chen, X.-a.; Sato, A.; Wada, H., Crystal structure and twinning of monoclinic Cu2SnS3. Materials Research Bulletin 2000,35 (9), 1563-1570.
    19. Liu, Q.; Zhao, Z.; Lin, Y.; Guo, P.; Li, S.; Pan, D.; Ji, X., Alloyed (ZnS)x(Cu2SnS3)1-x and (CuInS2)x(Cu2SnS3)1-x nanocrystals with arbitrary composition and broad tunable band gaps. Chemical Communications 2011,47 (3), 964-966.
    20. Chalapathi, U.; Jayasree, Y.; Uthanna, S.; Sundara Raja, V., Effect of annealing temperature on the properties of spray deposited Cu2SnS3thin films. Physica Status Solidi (A) 2013,210 (11), 2384-2390.
    21. Kamimura, S.; Sasaki, Y.; Kanaya, M.; Tsubota, T.; Ohno, T., Improvement of selectivity for CO2 reduction by using Cu2ZnSnS4 electrodes modified with different buffer layers (CdS and In2S3) under visible light irradiation. Royal Society of ChemistryAdvances2016,6 (113), 112594-112601.
    22. Lokhande, A. C.; Chalapathy, R. B. V.; He, M.; Jo, E.; Gang, M.; Pawar, S. A.; Lokhande, C. D.; Kim, J. H., Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques: A status review. Solar Energy Materials and Solar Cells 2016,153, 84-107.
    23. Dong, Y.; He, J.; Li, X.; Chen, Y.; Sun, L.; Yang, P.; Chu, J., Study on the preheating duration of Cu2SnS3 thin films using RF magnetron sputtering technique for photovoltaics. Journal of Alloys and Compounds 2016,665, 69-75.
    24. H. Zhang, M. X., S.Zhang,Y.Xiang, Fabrication of highly crystallized Cu2SnS3 thin films through sulfurization of Sn-rich metallic precursors. Journal of Alloys and Compounds2014,602 199–203.
    25. Y.Dong, J. H., X.Li,W.Zhou,Y.Chen,L.Sun,P.Yang,J.Chu, Synthesisand optimized sulfurization time of Cu2SnS3 thin films obtained from stacked metallic precursors for solar cell application. Material Letters 160 2015,468–471.
    26. Y.Dong, J. H., L.Sun,Y.Chen,P.Yang,J.Chu,, Effect of sulfurization temperature on properties of Cu2SnS3 thin films and solar cells prepared by sulfurization of stacked metallic precursors. Materials Science in Semiconductor Processing2015,38 171–176.
    27. P.Zhao, S. C., Influence of sulfurization temperature on photoelectric properties Cu2SnS3 thin films deposited by magnetron sputtering. Advances in Materials Science and Engineering2013,1–4.
    28. S. Sato, H. S., G.Shi,M.Sugiyama, Investigation of the sulfurization process of Cu2SnS3 thin films with stacked layers CBD-Cu/SnS by rapid thermal process. Materials Letters2015,12 757–760.
    29. P.A.Fernandes, P. M. P. S., A.F.da Cunha, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. Journal of Physics D: Applied Physics2010,43(2010)215403.
    30. Mitsuki Nakashima, J. F., Toshiyuki Yamaguchi and Masanobu Izaki, Cu2SnS3 thin-film solar cells fabricated by sulfurization from NaF/Cu/Sn stacked precursor. Applied Physics Express, 2015, Volume 8, Number 4.
    31. M. Nakashima, T. Y., H. Itani, J. Sasano, M. Izaki, Cu2SnS3 thin film solar cells prepared by thermal crystallization of evaporated Cu/Sn precursors in sulfur and tin atmosphere. Physical Status Solidi B 2015,12, Issue 6, Pages 761–764.
    32. Yuji Miyata, S. N., Yoji Akaki, Effects of H2S annealing on Cu-Sn-S thin films prepared from vacuum-evaporated Cu-Sn precursor. Physical Status Solidi B 2015,12, Issue 6, Pages 765–768.
    33. R.B. Ettlinger, A. C., S.Canulescu,N.Pryds,J.Schou, Pulsedlaser deposition from ZnS and Cu2SnS3 multicomponent targets. Applied Surface Science2015,336 385–390.
    34. S.A.Vanalakar, G. L. A.,A.S.Kamble,C.W.Hong,P.S.Patil,J.H.Kim,, Fabrication of Cu2SnS3 thin film solar cells using pulsed laser deposition techniqueSol. Solar Energy Materials and Solar Cells2015,138 1–8.
    35. S.A.Vanalakar, G. L. A., S.W.Shin,H.S.Yang,P.S.Patil,J.Y.Kim,J.H.Kim, Non-vacuum mechanochemical route to the synthesis of Cu2SnS3 nano-ink for solar cellapplications. Acta Materialia2015,85 314–321.
    36. Q. Chen, X. D., Y.Ni,S.Cheng,S.Zhuang, Study and enhance the photovoltaic properties of narrow-bandgap Cu2SnS3 solar cellby p-n junction interface modification. Journal of Colloid and Interface Science2012,376 327–330.
    37. T.Nomura, T. M., T.Wada, Fabrication of Cu2SnS3 solar cells by screen-printing and high-pressures intering process. Japanese Journal of Applied Physics2014,53 05FW01.
    38. X. Chen, H. W., A.Sato,M.Mieno, Synthesis, electrical conductivity, and crystal structure of Cu4Sn7S16 and structure refinement of Cu2SnS3. Journal of Solid State Chemistry1998,139 144–151.
    39. S. Fiechter, M. M., G.Schmidt,W.Henrion,Y.Tomm, Phaserelations and optical properties of semiconducting ternary sulfides in the system Cu–Sn–S. Journal of Physics and Chemistry of Solids2003,64 1859–1862.
    40. William D. Callister, J., Materials Science and Engineering. John Wiley & Sons 2006.
    41. Bin Xu, Y. Z., Aimin Sun, Yan Li, Wen Li, Xiuxun Han, Direct solution coating of pure-phase Cu2SnS3 thin films without sulfurization. Journal of Materials Science: Materials in Electronics 2017,28, Issue 4, pp 3481–3486.
    42. U. Chalapathi, Y. J., S. Uthanna, Sundara Raja Vanjari, Effect of annealing temperature on the properties of spray deposited Cu2SnS3 thin films. Physica Status Solidi (A) Applications and Materials 2013,210(11).
    43. Qu, Y. D., X. Progress, challenge and perspective of heterogeneous photocatalysts. Chemical Society Reviews2013,Rev. 42, 2568–2580.
    44. Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q.O.,; Dewulf, J., Malcata, F.X. and van Langenhove, H, Enhanced CO2 Fixation and Biofuel Production via Microalgae: Recent Developments and Future Directions. Trends Biotechnol 2010,28: 371–380.
    45. Ho, S. H., Chen, C.Y., Lee, D.J. and Chang, J.S, Perspectives on Microalgal CO2-emission Mitigation Systems. A Review. Biotechnology Advance2011,29: 189–198.
    46. Zeng, X. H., Danquah, M.K., Chen, X.D. and Lu, Y.H, Microalgae Bioengineering: From CO2 Fixation to Biofuel Production. Renewable Sustainable Energy Review2011,15: 3252–3260.
    47. Blankenship, R. E., Tiede, D.M., Barber, J., Brudvig, G.W., Fleming, G., Ghirardi, M., Gunner, M.R., Junge, W., Kramer, D.M., Melis, A., Moore, T.A., Moser, C.C., Nocera, D.G., Nozik, A.J., Ort, D.R., Parson, W.W., Prince, R.C. and Sayre, R.T., Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement. Science 2011,332: 805–809.
    48. Chueh, W. C. a. H., S.M, Ceria as a Thermochemical Reaction Medium for Selectively Generating Syngas or Methane from H2O and CO2. Chemistry & Sustainability2009,2: 735–739.
    49. Abe, T., Yoshida, T., Tokita, S., Taguchi, F., Imaya, H; and Kaneko, M., Factors Affecting Selective Electrocatalytic CO2 Reduction with Cobalt Phthalocyanine Incorporated in a Polyvinylpyridine Membrane Coated on a Graphite Electrode. Journal of Electroanal. Chemistry1996,412: 125–132.
    50. Jitaru, M., Lowy, D.A., Toma, M., Toma, B.C. and Oniciu,L, Electrochemical Reduction of Carbon Dioxide on Flat Metallic Cathodes. Journal of Applied Electrochemistry1997,27, 875–889..
    51. Sutin, N., Creutz, C. and Fujita, E, Photo-induced Generation of Dihydrogen and Reduction of Carbon Dioxide Using Transition Metal Complexes. Comments Inorganic Chemistry1997,19: 67–92.
    52. Song, C. S., Global Challenges and Strategies for Control, Conversion and Utilization of CO2 for Sustainable Development Involving Energy Catalysis, Adsorption and Chemical Processing. Catalyst Today 115: 2–32.
    53. Usubharatana, P., McMartin, D., Veawab, A. and Tontiwachwuthikul, P, Photocatalytic Process for CO2 Emission Reduction from Industrial Flue Gas Streams. Industrial & Engineering Chemistry Research2006,45: 2558–2568.
    54. Indrakanti, V. P., Kubicki, J.D. and Schobert, H.H, Photoinduced Activation of CO2 on Ti-based Heterogeneous Catalysts: Current State, Chemical Physicsbased Insights and Outlook. Energy & Environmental Science2009,2: 745-758.
    55. Morris, A. J., Meyer, G.J. and Fujita, E, Molecular Approaches to the Photocatalytic Reduction of Carbon Dioxide for Solar Fuels. Accounts of Chemical Research2009,42: 1983–1994.
    56. Biswas, P., Wang, W.N. and An, W.J, The Energyenvironment Nexus: Aerosol Science and Technology Enabling Solutions. Frontiers of Environmental Science & Engineering2011,5: 299–312.
    57. Windle, C. D. a. P., R.N., Advances in Molecular Photocatalytic and Electrocatalytic CO2 Reduction. Coord. Chemical Reviews2012,256: 2562–2570.
    58. Inoue, T., Fujishima, A., Konishi, S. and Honda, K, Photoelectrocatalytic Reduction of Carbon Dioxide in Aquesous Suspensions of Semiconductor Powders. Nature 1979, 277: 637.
    59. Liu, B. J., Torimoto, T. and Yoneyama, H., Photocatalytic Reduction of CO2 Using Surface-modified CdS Photocatalysts in Organic Solvents.Journal of Photochemistry and Photobiology1998,A 113: 93–97.
    60. Wei-Ning Wang, J. S., Y. Jeffrey Yang, Pratim Biswas, Comparison of CO2 Photoreduction Systems: A Review. Aerosol and Air Quality Research 2014,14: 533–549.
    61. 陳怡璇. 奈米導電高分子與二維奈米碳材於二氧化碳光催化還原之應用. 2017.
    62. Koffyberg, F. P. a. B., F.A, A Photo-Electrochemical Determination of the Position of the Conduction and Valence Band Edges of P-Type Cuo. Journal of Applied Physics1982,53: 1173–1177.
    63. Matsumoto, Y., Energy Positions of Oxide Semiconductors and Photocatalysis with Iron Complex Oxides. Journal of Solid State Chemistry1996,126: 227–234.
    64. de Jongh, P. E., Vanmaekelbergh, D. and Kelly, J.J, Cu2O: A Catalyst for the Photochemical Decomposition of Water splitting.Chemical Communications1999,12: 1069–1070.
    65. Xu, Y. a. S., M.A.A, The Absolute Energy Positions of Conduction and Valence Bands of Selected Semiconducting Minerals. American Mineralogist2000,85: 543–556.
    66. Carlson, B., Leschkies, K., Aydil, E.S. and Zhu, X.Y, Valence Band Alignment at Cadmium Selenide Quantum Dot and Zinc Oxide (101) Interfaces. The Journal of Physical Chemistry2008,C 112: 8419–8423.

    QR CODE