簡易檢索 / 詳目顯示

研究生: 楊酈
Li Yang
論文名稱: 具有優先權、再生能源、無耐性與異質能量需求之無線感測器系統研究
A Study on the Wireless Sensor System with Priority, Renewable Energy, Impatience, and Heterogeneous Energy Requirements
指導教授: 鍾順平
Shun-Ping Chung
口試委員: 林永松
Yeong-Sung Lin
王乃堅
Nai-Jian Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 358
中文關鍵詞: 無線感測器系統能量收集可再生能源異質能量需求優先權不耐煩
外文關鍵詞: wireless sensor system, energy harvesting, renewable energy, heterogeneous energy requirements, priority, impatience
相關次數: 點閱:473下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 誌謝 III Contents IV List of Figures VII 1. Introduction 1 2. System model 3 2.1 Scenario 1 4 2.2 Scenario 2 4 2.3 Scenario 3 4 2.4 Scenario 4 4 3. Analytical model 5 3.1 Scenario 1 5 3.1.1 Model diagram 5 3.1.2 State balance equations 5 3.1.3 Iterative algorithm 19 3.1.4 Performance measures 19 3.2 Scenario 2 48 3.2.1 Model diagram 48 3.2.2 State balance equations 48 3.2.3 Iterative algorithm 67 3.2.4 Performance measures 68 3.3 Scenario 3 112 3.3.1 Model diagram 112 3.3.2 State balance equations 113 3.3.3 Iterative algorithm 122 3.3.4 Performance measures 123 3.4 Scenario 4 130 3.4.1 Model diagram 130 3.4.2 State balance equations 131 3.4.3 Iterative algorithm 144 3.4.4 Performance measures 145 4. Simulation model 151 4.1 Scenario 1 151 4.1.1 Main program 151 4.1.2 High-priority customer arrival subprogram 151 4.1.3 Low-priority customer arrival subprogram 153 4.1.4 Energy arrival subprogram 154 4.1.5 Impatient subprogram 155 4.1.6 Departure subprogram 156 4.1.7 Performance measures 157 4.2 Scenario 2 168 4.2.1 Main program 168 4.2.2 High-priority customer arrival subprogram 168 4.2.3 Low-priority customer arrival subprogram 170 4.2.4 Energy arrival subprogram 171 4.2.5 Impatient subprogram 172 4.2.6 Departure subprogram 173 4.2.7 Performance measures 174 4.3 Scenario 3 185 4.3.1 Main program 185 4.3.2 New high-priority customer arrival at node 1 subprogram 185 4.3.3 New low-priority customer arrival at node 1 subprogram 187 4.3.4 Routed customer arrival at node n from node 3 subprogram 188 4.3.5 Node-n energy arrival subprogram 190 4.3.6 Node-n impatient subprogram 191 4.3.7 Node-1 departure subprogram 192 4.3.8 Node-2 departure subprogram 193 4.3.9 Node-3 departure subprogram 195 4.3.10 Performance measures 196 4.4 Scenario 4 215 4.4.1 Main program 215 4.4.2 New high-priority customer arrival at node 1 subprogram 215 4.4.3 New low-priority customer arrival at node 1 subprogram 217 4.4.4 Routed customer arrival at node n from node 3 subprogram 218 4.4.5 Node-n energy arrival subprogram 220 4.4.6 Node-n impatient subprogram 221 4.4.7 Node-1 departure subprogram 222 4.4.8 Node-2 departure subprogram 224 4.4.9 Node-3 departure subprogram 225 4.4.10 Performance measures 226 5. Numerical results 246 5.1 Scenario 1 246 5.2 Scenario 2 257 5.3 Scenario 3 268 5.3.1 New HP customer arrival rate 268 5.3.2 Routing probability 278 5.4 Scenario 4 298 5.4.1 New HP customer arrival rate 298 5.4.2 Routing probability 309 6. Conclusions 333 References 334

    [1] L. Rodrigues, E. Leão, C. Montez, R. Moraes, P. Portugal, and F. Vasques, "An Advanced Battery Model for WSN Simulation in Environments with Temperature Variations," IEEE Sensors Journal, vol. 18, no. 19, pp. 8179-8191, Oct. 2018, doi: 10.1109/JSEN.2018.2863549.
    [2] N. Vikram, K. S. Harish, M. S. Nihaal, R. Umesh, and S. A. A. Kumar, "A Low Cost Home Automation System Using Wi-Fi Based Wireless Sensor Network Incorporating Internet of Things (IoT)," 2017 IEEE 7th International Advance Computing Conference (IACC), pp. 174-178, Hyderabad, 2017, doi: 10.1109/ IACC.2017.0048.
    [3] A. Boubrima, W. Bechkit, and H. Rivano, "Optimal WSN Deployment Models for Air Pollution Monitoring," IEEE Transactions on Wireless Communications, vol. 16, no. 5, pp. 2723-2735, May 2017, doi: 10.1109/TWC.2017.2658601.
    [4] V. Potdar, A. Sharif, and E. Chang, "Wireless Sensor Networks: A Survey," 2009 International Conference on Advanced Information Networking and Applications Workshops, pp. 636-641, Bradford, May 2009, doi: 10.1109/WAINA.2009.192.
    [5] J. Guo, C. Zhang, Y. Chen, and F. Wang, "Balanced Energy Using Uneven Transmission Schemes to Prolong the Lifetime of WSN," 2016 Chinese Control and Decision Conference (CCDC), pp. 2410-2414, Yinchuan, 2016, doi: 10.1109/ CCDC.2016.7531389.
    [6] F. Deng, X. Yue, X. Fan, S. Guan, Y. Xu, and J. Chen, "Multisource Energy Harvesting System for a Wireless Sensor Network Node in the Field Environment," IEEE Internet of Things Journal, vol. 6, no. 1, pp. 918-927, Feb. 2019, doi: 10.1109/JIOT.2018.2865431.
    [7] M. Rasheduzzaman, P. B. Pillai, A. N. C. Mendoza, and M. M. De Souza, "A Study of the Performance of Solar Cells for Indoor Autonomous Wireless Sensors," 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1-6, Prague, 2016, doi: 10.1109/CSNDSP. 2016.7574001.
    [8] J. J. Justus and A. C. Sekar, "Energy Efficient Priority Packet Scheduling with Delay and Loss Constraints for Wireless Sensor Networks," 2016 International Conference on Inventive Computation Technologies (ICICT), pp. 1-7, Coimbatore, 2016, doi: 10.1109/INVENTIVE.2016.7830076.
    [9] S. M. Martínez Chávez, M. E. Rivero-Angeles, L. I. Garay-Jiménez, and I. C. Romero Ibarra, "Priority Schemes for Life Extension and Data Delivery in Body Area Wireless Sensor Networks With Cognitive Radio Capabilities," Wireless Communications and Mobile Computing, vol. 2019, pp. 1-22, doi: 10.1155/2019/ 2637830.
    [10] B.-S. Kim, H. Park, K. H. Kim, D. Godfrey, and K.-I. Kim, "A Survey on Real-Time Communications in Wireless Sensor Networks," Wireless Communications and Mobile Computing, vol. 2017, pp. 1-14, 2017.
    [11] Y. Li, C. S. Chen, Y.-Q. Song, and Z. Wang, "Real-Time QoS Support in Wireless Sensor Networks: A Survey," 7th IFAC International Conference on Fieldbuses & Networks in Industrial & Embedded Systems, France, pp. 373-380, Nov. 2007.
    [12] C. Kim, A. Dudin, S. Dudin, and O. Dudina, "Performance Evaluation of A Wireless Sensor Node With Energy Harvesting and Varying Conditions of operation," 2017 IEEE International Conference on Communications (ICC), pp. 1-6, Paris, 2017, doi: 10.1109/ICC.2017.7996994.
    [13] S. P. Chung, M. J. Liao, L. Yang, "Performance Evaluation of the Wireless Sensor with Renewable Energy, Impatience, and Heterogeneous Energy Requirements," accepted by IET Wireless Sensor Systems.
    [14] V. Singanamalla, R. Patan, M.S. Khan, and S. Kallam, "Reliable and Energy-Efficient Emergency Transmission in Wireless Sensor Networks," Internet Technology Letters, vol. 2, pp. 1–6, 2019, doi: 10.1002/itl2.91.
    [15] B. A. Muzakkari, M. A. Mohamed, M. F. A. Kadir, and M. Mamat, "Queue and Priority-Aware Adaptive Duty Cycle Scheme for Energy Efficient Wireless Sensor Networks," IEEE Access, vol. 8, pp. 17231-17242, 2020, doi: 10.1109/ ACCESS. 2020.2968121.
    [16] C. E. Shannon, "A Mathematical Theory of Communication," The Bell System Technical Journal, Vol. 27, pp. 379-423, July 1948.
    [17] T. S. Rappaport, Wireless Communication: Principles and Practice, 2nd Edition, Prentice-Hall of India, 2003
    [18] T. Li, H. Zhou, H. Luo, W. Quan, and S. Yu, "Modeling Software Defined Satellite Networks Using Queueing Theory," 2017 IEEE International Conference on Communications (ICC), pp. 1-6, Paris, 2017, doi: 10.1109/ICC.2017.7997290.

    無法下載圖示 全文公開日期 2025/08/13 (校內網路)
    全文公開日期 2025/08/13 (校外網路)
    全文公開日期 2025/08/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE