簡易檢索 / 詳目顯示

研究生: 陳奇良
CHI-LIANG CHEN
論文名稱: 具有溢流與非占先優先權之多頻帶行動路由器之研究
A Study on Multi-band Mobile Routers with Overflow and Non-preemptive Priority
指導教授: 鍾順平
Shun-Ping Chung
口試委員: 王乃堅
Nai-Jian Wang
林永松
Yeong-Sung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 166
中文關鍵詞: 多頻帶行動路由器溢流非占先優先權封包遺失機率成功送達率平均系統延遲
外文關鍵詞: multi-band mobile router, overflow, non-preemptive priority, packet loss probability, throughput, average system delay
相關次數: 點閱:229下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 越來越多使用者要求在移動時可進接大型多媒體檔案,例如,高解析度音頻,視訊與圖像。因此無線數據網路的行動性頻寬需求以指數成長。為了滿足使用者的需求,現在的多頻帶無線路由器被設計成為可同步支援多於一個頻帶。目前的多頻帶無線路由器使用二個不同頻帶,但卻沒有充分利用低使用率的頻帶。無線頻譜是稀有的資源。另一方面,不同封包可能有不同的服務品質需求。因此,為了確保系統資源使用率最大化和對於不同類別之封包提供服務差異化,我們必須針對多頻帶行動路由器提出一個適合的排程和佇列管理機制。我們研究具有三個頻帶或佇列的多頻帶路由器效能。我們考慮三種不同類別的封包:控制更新、即時和非即時。首先,我們考慮傳統的多頻帶行動路由器,其中在不同佇列之間不支援溢流。再來,我們考慮第一類分享式多頻帶行動路由器,其中在不同佇列之間支援溢流,且在相同佇列之中不同類別的封包有著相同的平均服務時間。最後,我們考慮第二類分享式多頻帶行動路由器,其中在不同佇列之間支援溢流,且在相同佇列之中不同類別的封包有著不同的平均服務時間。對於第一類和第二類的分享式多頻帶行動路由器,在每一個佇列之中不同類別的封包被給與對應的非占先優先權。針對每個我們考慮的多頻帶行動路由器,我們開發對應的解析模型。對於第一類分享式多頻帶行動路由器,我們比較提出模型和近似模型的結果。我們研究不同系統參數,例如新封包抵達速率,對於效能指標的影響。我們感興趣的效能指標包含每一類別封包的封包遺失機率、成功送達率、通道利用率和平均系統延遲。我們也呈現傳統、第一類和第二類的多頻帶行動路由器之間的效能差異。最後但不是最不重要的,我們使用visual C++來撰寫電腦模擬程式以驗證解析結果的準確性。


    More and more users demand mobility in accessing large multimedia files, such as high definition audio, video, and images. Thus, bandwidth demand with mobility in wireless data networks is increasing exponentially. In order to satisfy users’ needs, today multi-band wireless routers are designed to simultaneously support more than one frequency band. Current multi-band Wi-Fi routers utilize two different bands without exploiting the under-utilized spectrum. The wireless spectrum is a scarce resource. On the other hand, different packets may have a different quality of service requirement. Therefore, it is necessary to come up with an appropriate scheduling and queue management scheme for the multi-band mobile routers to ensure the maximum possible utilization of the system resources and provide service differentiation among different classes of packets. We investigate the performance of multi-band mobile routers (MBMR) with three frequency bands or queues. There are three classes of packets: binding-update, real-time, and non-real-time. First, we consider the traditional MBMR (TMBMR), where no overflow is allowed among different queues. Second, we consider the class-1 shared MBMR (SMBMR-I), where overflow is allowed among different queues and the average service times of different packets at the same queue is identical. Third, we consider the class-2 shared MBMR (SMBMR-II), where overflow is allowed among different queues and the average service times of different packets at the same queue may be different. For SMBMR-I and SMBMR-II, the non-preemptive priority is assigned to different classes of packets at each queue. We develop the analytical model for each MBMR considered. We compare the results of the proposed model and the approximation scheme for SMBMR-I. We study the effect of various system parameters, e.g., the new packet arrival rate, on the performance measures of interest. The performance measures of interest include the packet loss probability, throughput, utilization, and average system delay of each class of packets. We also present the performance difference of TMBMR, SMBMR-I, and SMBMR-II. Last but not least, simulation programs are written in visual C++ to verify the accuracy of the analytical results.

    摘要 1 ABSTRACT 2 CONTENTS 3 List of Tables 6 List of Figures 6 1. Introduction 1 2. System Model 3 2.1 Traditional Multi-band Mobile Router 3 2.2 Shared Multi-band Mobile Router I 4 2.3 Shared Multi-band Mobile Router II 6 3. Analytical Model 8 3.1 Traditional Multi-band Mobile Router 8 3.2 Shared Multi-Band Mobile Router I 8 3.2.1 Equilibrium Equations for R-queue 9 3.2.2 Equilibrium Equations for B-queue 12 3.2.3 Equilibrium Equations for N-queue 20 3.2.4 Iterative Algorithm 23 3.2.5 Performance Measures 24 3.3 Shared Multi-Band Mobile Router II 30 3.3.1 Equilibrium Equations for R-queue 30 3.3.2 Equilibrium Equations for B-queue 30 3.3.3 Equilibrium Equations for N-queue 40 3.3.4 Iterative Algorithm 40 3.3.5 Performance Measures 40 4. Simulation Model 44 4.1 Traditional MBMR 44 4.2 Class-1 Shared MBMR (SMBMR-I) 44 4.2.1 Main program 44 4.2.2 Next event subprogram 44 4.2.3 Rr new packet arrival subprogram 45 4.2.4 Rn overflowed packet arrival subprogram 45 4.2.5 Bb new packet arrival subprogram 45 4.2.6 Br overflowed packet arrival subprogram 46 4.2.7 Bn overflowed packet arrival subprogram 46 4.2.8 Nn new packet arrival subprogram 46 4.2.9 Nr overflowed packet arrival subprogram 47 4.2.10 R-queue departure subprogram 47 4.2.11 B-queue departure subprogram 47 4.2.12 N-queue departure subprogram 48 4.3 Class-2 Shared MBMR (SMBMR-II) 48 4.3.1 Main program 48 4.3.2 Next event subprogram 48 4.3.3 Rr new packet arrival subprogram 48 4.3.4 Rn overflowed packet arrival subprogram 48 4.3.5 Bb new packet arrival subprogram 49 4.3.6 Br overflowed packet arrival subprogram 49 4.3.7 Bn overflowed packet arrival subprogram 50 4.3.8 Nn new packet arrival subprogram 50 4.3.9 Nr overflowed packet arrival subprogram 50 4.3.10 R-queue departure subprogram 50 4.3.11 B-queue departure subprogram 50 4.3.12 N-queue departure subprogram 51 4.4 Performance measures 51 5. Numerical results 71 5.1 Accuracy of the Proposed Analytical Model 72 5.2 Comparison of TMBMR and SMBMR- I 76 5.3 Effect of Individual Arrival Rate on Performance 81 5.3.1 BU new packet arrival rate 81 5.3.2 RT new packet arrival rate 85 5.3.3 NRT new packet arrival rate 90 5.4 Comparison of SMBMR- I and SMBMR-II 95 6. Conclusions 145 REFERENCES: 146

    [1] H. Singh, J. Hsu, L. Verma, S. S. Lee, and C. Ngo, “Green operation of multi-band wireless LAN in 60 GHz and 2.4/5 GHz,” Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, pp. 787–792, Jan 2011.
    [2] E. Perahia, C. Cordeiro, M. Park, and L. L. Yang, “IEEE 802.11ad: defining the next generation multi-gbps Wi-Fi,” 7th IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, pp. 1-5, Jan 2010.
    [3] I. F. Akyildiz, D. M. Gutierrez-Estevez, and E. C. Reyes, “The evolution to 4G cellular systems: LTE-advanced,” Physical Communication, vol. 3, pp. 217–244, March 2010.
    [4] S. Singh, R. Mudumbai, and U. Madhow, “Distributed coordination with deaf neighbors: Efficient medium access for 60 ghz mesh networks,” IEEE INFOCOM, San Diego, CA, pp. 1343-1346, March 2010.
    [5] H. N. Nguyen, and I. Sasase, “Downlink queuing model and packet scheduling for providing lossless handoff and QoS in 4G mobile networks,” IEEE Transactions on Computing, pp. 452-462, May 2006.
    [6] Y. B. Lin, W. R. Lai, and R. J. Chen, “Performance analysis for dual band PCS networks,” IEEE Transactions on Computers, pp. 148-159, February 2000.
    [7] L. Verma and S. S. Lee, “Multi-band Wi-Fi systems: A new direction in personal and community connectivity,” IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, pp. 665–666, Jan 2011.
    [8] A. Bourdena, G. Kormentzas, E. Pallis, and G. Mastorakis, “Radio resource management algorithms for efficient QoS provisioning over cognitive radio networks,” IEEE ICC, pp. 2415-2420, 2013.
    [9] J. M. Peha, “Sharing spectrum through spectrum policy reform and cognitive radio,” Proceedings of the IEEE, pp. 708-719, April 2009.
    [10] D. H. Kang, K. W. Sung, and J. Zander, “High capacity indoor and hotspot wireless systems in shared spectrum: A techno-economic analysis,” IEEE Communications Magazine, pp. 102-109, December 2013.
    [11] H. B. Yilmaz, T. Tugcu, and F. Alago ̈z, “Radio environment map as enabler for practical cognitive radio networks,” IEEE Communications Magazine, pp. 162-169, December 2013.
    [12] N. Nasser, L. Karim, and T. Taleb, “Dynamic multilevel priority packet scheduling scheme for wireless senior network,” IEEE Transactions on Wireless Communications, pp. 1448-1459, April 2013.
    [13] K. Doppler, C. Wijting, T. Henttonen, and K. Valkealahti, “Multiband scheduler for future communication systems,” I. J. Communications, Network and System Sciences, vol. 1, no. 1, pp. 1–9, Feb 2008.
    [14] M. S. Hossain, M. Atiquzzaman, and W. Ivancic, “Scheduling and queue management for multi-class traffic in access router of mobility protocol,” IEEE International Conference on High Performance Computing and Communications (HPCC), Melbourne, Australia, pp. 653-658, Sep 1-3, 2010.
    [15] V. Zaborovsky, O. Zayats, and V. Mulukha, “Priority Queueing with Finite Buffer Size and Randomized Push-Out Mechanism,” International Conference on Networking, Menuires, pp. 316–320, April 11-16, 2010.
    [16] M. S. Hossain, H. Narman, and M. Atiquzzaman, “A novel scheduling and queue management scheme for multi-band mobile routers,” IEEE International Conference on Communications (ICC), Budapest, Hungary, pp. 3787 – 3791, June 9-13, 2013.

    無法下載圖示 全文公開日期 2020/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE