簡易檢索 / 詳目顯示

研究生: 葉宗憲
Tsung-Hsieh Yeh
論文名稱: 線放電加工多晶鑽石之晶粒破壞形式與表面完整性研究
Machined surface integrity and fracture morphology when wire electrical discharge machining (WEDM) of polycrystalline diamonds
指導教授: 郭俊良
Chun-Liang Kuo
口試委員: 蔡曜陽
Yao-Yang Tsai
林原慶
Yuan-Ching Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: 線放電加工多晶鑽石焦耳熱模型鑽石晶粒破壞形式表面完整性多指標最佳化
外文關鍵詞: Wire electrical discharge machining, Polycrystalline diamond, Joule heat effect model, Destruction form of diamond grain, Surface integrity, Multi-objective optimisation
相關次數: 點閱:317下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探索線放電加工(wire electrical discharge machining, WEDM)於多晶鑽石,控制參數對表面形貌產生之破壞形式。多晶鑽石具有高硬度(8000–10000 HV)、高彈性模數(1000 GPa)、高熱傳導率(550–920 W/m K)與低熱膨脹係數(1.2–3.7 µm/K)等特性,因此多晶鑽石之加工皆以高能量製程進行。多晶鑽石於線放電加工時,鑽石晶粒因反覆之熱效應,導致邊脆裂(chipping-off)、裂縫(crack)、晶粒拔除(dislodgement)、凹坑(crater)與石墨化(graphitization)等缺陷,因此探究放電能量之控制參數有其必要性。本研究修正焦耳熱模型、材料移除模型與表面粗糙度模型,並於實驗中操作開路電壓(85–115 V)、脈衝放電時間(0.1–0.2 μs)以及脈衝休止時間(40–60 μs),建立晶粒破壞形式與特徵化方法。實驗結果顯示,開路電壓增加時,提升放電能量,增加熱能吸收比例與電離通道半徑,造成材料移除率與表面粗糙度提高。此外,多晶鑽石裡之鈷元素,於高溫中誘發晶粒間之內應力,形成邊脆裂與晶粒間裂縫之破壞形貌。當增加之放電能量會使邊脆裂與裂縫之情形加劇。多指標之最佳化結果,可同時求得參數區間內之材料移除率、表面粗糙度、凹坑、邊脆裂與裂縫之最佳化結果。所修正之材料移除率模型精度為81.62% (R2),表面粗糙度之修正模型精度為94.69% (R2)。多晶鑽石加工表面之三維形貌、顯微組織、破壞形式特徵化結果與控制參數之關聯,皆已分析並詳盡討論。


    This study explores the machined surface integrity and fracture morphology when wire electrical discharge machining (WEDM) of polycrystalline diamonds. Polycrystalline diamonds having the characteristics of high hardness (8000–10000 HV), high elastic modulus (1000 GPa), high thermal conductivity (550–920 W/m K) and low coefficient of thermal expansion (1.2–3.7 µm/K) are to be machined with high energy events. During energy being applied, the diamond grains will be damaged by mechanical force and thermal effect, such as chipping-off, crack, delamination, grain dislodgement, crater and graphitization. Therefore, investigations of the control parameters on the surface damages and fracture morphology necessitate understandings of the mechanisms underlied. In this work, the modified Joule heat, material removal and surface roughness model were presented, and validated with experiments. When employing open voltage (85–115 V), pulse-on time (0.1–0.2 μs) and pulse-off time (40–60 μs), the recorded results are characterized, filtered and processed in order to be tested via statistical examinations. The experimental results show that when the open voltage increases, the discharge energy is increased, the thermal energy absorption ratio and the ionization channel radius are increased, resulting in an increase in material removal rate and surface roughness. In addition, the cobalt element in the polycrystalline diamond induces internal stress between the grains at high temperature, causing effects of chipping-off and cracking in the matrix. When the discharge energy is increased, the amounts of chipping-off and cracking increase. In the validation experiment, the model accuracy of the corrected material removal rate is 81.62% (R2), whereas the surface roughness model present an accuracy of 94.69% (R2). In the multi-objective optimisation, preferable results of material removal rate, surface roughness, crater, chipping-off and cracks can be obtained simultaneously. The correlation between the three-dimensional morphology, microstructure, characterization results and control parameters of the processed surface of polycrystalline diamonds has been analyzed and discussed in detail.

    目錄 摘要 I Abstract II 致謝 IV 符號定義 V 目錄 VII 圖目錄 X 表目錄 XIII 第一章 研究介紹 1 第二章 文獻回顧 3 2.1 多晶鑽石之製作程序 3 2.2 多晶鑽石刀具之加工成型方法 4 2.3 線放電加工於多晶鑽石之控制參數 7 2.4 鑽石晶粒之破壞形式 9 2.5 多指標最佳化 11 第三章 研究方法 13 3.1 研究程序 13 3.2 修正之焦耳熱模型 14 3.3 材料移除模型 17 3.4 表面粗糙度模型 18 3.5 顯微結構分析 20 3.6 實驗陣列 20 第四章 破壞形式之觀測與特徵化 22 4.1 材料移除率 22 4.2 表面粗糙度與三維形貌 22 4.3 電子顯微鏡觀測 23 4.4 凹坑 24 4.5 邊脆裂 24 4.6 裂縫 25 4.7 石墨化 26 第五章 實驗工作 28 5.1 實驗材料 28 5.2 實驗設置 29 5.3 放電波形之量測 30 5.4 控制參數之統計檢定 32 5.5 多指標最佳化 33 第六章 實驗結果 34 6.1 放電之電壓電流波形 34 6.2 材料移除率 38 6.3 表面粗糙度與三維形貌 40 6.4 鑽石晶粒之破壞形式 45 6.4.1 凹坑 45 6.4.2 邊脆裂 47 6.4.3 裂縫 49 6.5 破壞形式之參數檢定 50 6.5.1 控制參數與凹坑之關係 50 6.5.2 控制參數與邊脆裂之效應 52 6.5.3 控制參數與裂縫之影響 55 6.6 多晶鑽石之石墨化 58 6.7 模型理論值與實驗結果比較 60 6.8 多指標最佳化 63 第七章 結論與未來展望 67 7.1 文獻回顧總結 67 7.2 研究方法總結 68 7.3 特徵化方法總結 69 7.4 研究結果總結 69 7.5 未來展望 71 參考文獻 72 附錄一 研究著作與學術榮譽 80

    H.T. Hall, Some High‐Pressure, High‐Temperature Apparatus Design Considerations: Equipment for Use at 100 000 Atmospheres and 3000°C, Review of Scientific Instruments, 29 (1958) 267-275.
    [2] J.D. Belnap, Sintering of ultrahard materials, (2010) 389-414.
    [3] H.T. Hall, Sintered Diamond: A Synthetic Carbonado, Science, 169 (1970) 868.
    [4] H. Storong, Sintering of Diamond at 1800-1900℃ and 60-65 kbar, Ceramic Bulletin, 49 (1970) 1030-1032.
    [5] H. Katzman, W.F. Libby, Sintered Diamond Compacts with a Cobalt Binder, Science, 172 (1971) 1132.
    [6] M. Mashhadikarimi, Obtaining triple layer polycrystalline diamond compact by HPHT method, in, 2017.
    [7] L.E. Hibbs Jr, R.H. Wentorf Jr, Borazon and Diamond Compact Tools, 1974.
    [8] J.D. Dwan, Production of Diamond Impregnated Cutting Tools, Powder Metallurgy, 41 (1998) 84-86.
    [9] X. Lv, Q. Jian, Z. Li, K. Sun, H. Ji, Y. Zhu, Effect of controllable decomposition of MAX phase (Ti3SiC2) on mechanical properties of rapidly sintered polycrystalline diamond by HPHT, Ceramics International, 45 (2019) 16564-16568.
    [10] M. Akaishi, H. Kanda, Y. Sato, N. Setaka, T. Ohsawa, O. Fukunaga, Sintering behaviour of the diamond-cobalt system at high temperature and pressure, Journal of Materials Science, 17 (1982) 193-198.
    [11] S. Cygan, L. Jaworska, P. Putyra, W. Ratuszek, J. Cyboron, P. Klimczyk, Thermal Stability and Coefficient of Friction of the Diamond Composites with the Titanium Compound Bonding Phase, Journal of Materials Engineering and Performance, 26 (2017) 2593-2598.
    [12] D. Wang, W.S. Zhao, L. Gu, X.M. Kang, A study on micro-hole machining of polycrystalline diamond by micro-electrical discharge machining, Journal of Materials Processing Technology, 211 (2011) 3-11.
    [13] J.E. Field, The mechanical and strength properties of diamond, Rep Prog Phys, 75 (2012) 126505.
    [14] D.A. Axinte, D.S. Srinivasu, M.C. Kong, P.W. Butler-Smith, Abrasive waterjet cutting of polycrystalline diamond: A preliminary investigation, International Journal of Machine Tools and Manufacture, 49 (2009) 797-803.
    [15] A.F. Salenko, V.T. Shchetinin, G.V. Gabuzyan, V.A. Nikitin, N.V. Novikov, S.A. Klimenko, Cutting of polycrystalline superhard materials by jet methods, Journal of Superhard Materials, 38 (2016) 351-362.
    [16] R. Ciccu, B. Grosso, Improvement of the Excavation Performance of PCD Drag Tools by Water Jet Assistance, Rock Mechanics and Rock Engineering, 43 (2009) 465-474.
    [17] Y. Ogawa, M. Ota, K. Nakamoto, T. Fukaya, M. Russell, T.I. Zohdi, K. Yamazaki, H. Aoyama, A study on machining of binder-less polycrystalline diamond by femtosecond pulsed laser for fabrication of micro milling tools, CIRP Annals, 65 (2016) 245-248.
    [18] Y. Xing, L. Liu, X. Hao, Z. Wu, P. Huang, X. Wang, Micro-channels machining on polycrystalline diamond by nanosecond laser, Optics & Laser Technology, 108 (2018) 333-345.
    [19] Y. Xia, N. He, L. Li, G. Zhao, M. Wang, C. Wang, Study on fabrication of PCD micro-milling tool by picosecond pulsed laser, The International Journal of Advanced Manufacturing Technology, 105 (2019) 4551-4557.
    [20] P.-L. Tso, Y.-G. Liu, Study on PCD machining, International Journal of Machine Tools and Manufacture, 42 (2002) 331-334.
    [21] Y.-K. Liu, P.-L. Tso, The optimal diamond wheels for grinding diamond tools, The International Journal of Advanced Manufacturing Technology, 22 (2003) 396-400.
    [22] R. Kuppuswamy, K.-A. Airey, H. Sardikmen, Micro-grinding characteristics of polycrystalline diamond tool, The International Journal of Advanced Manufacturing Technology, 76 (2014) 161-171.
    [23] M.Z. Rahim, S. Ding, J. Mo, Electrical discharge grinding of polycrystalline diamond – Effect of wheel rotation, Machining Science and Technology, 20 (2016) 62-78.
    [24] J.Y. Pei, C.N. Guo, D.J. Hu, Electrical Discharge Grinding of Polycrystalline Diamond, Materials Science Forum, 471-472 (2004) 457-461.
    [25] P. Butler-Smith, M. Warhanek, D. Axinte, M. Fay, J.-F. Bucourt, R. Ragueneau, K. Wegener, The influences of pulsed-laser-ablation and electro-discharge-grinding processes on the cutting performances of polycrystalline diamond micro-drills, CIRP Annals, 65 (2016) 105-108.
    [26] M.A. Haikal Ahmad, M. Zulafif Rahim, M.F. Mohd Fauzi, N. Hafizah Azis, A.E. Ismail, M. Fahrul Hassan, A.M.T. Arifin, M.S. Yusof, M. Rasidi Ibrahim, Electrical Discharge Machining of Polycrystalline Diamond Using Copper Electrode - Finishing Condition, IOP Conference Series: Materials Science and Engineering, 203 (2017) 012019.
    [27] Z. Zhang, H. Peng, J. Yan, Micro-cutting characteristics of EDM fabricated high-precision polycrystalline diamond tools, International Journal of Machine Tools and Manufacture, 65 (2013) 99-106.
    [28] C. Gao, Z. Zhan, S. Wang, N. He, L. Li, Research on WEDM Process Optimization for PCD Micro Milling Tool, Procedia CIRP, 6 (2013) 209-214.
    [29] M.-T. Yan, G.-R. Fang, Y.-T. Liu, An experimental study on micro wire-EDM of polycrystalline diamond using a novel pulse generator, The International Journal of Advanced Manufacturing Technology, 66 (2012) 1633-1640.
    [30] S.-T. Chen, C.-H. Chen, C.-H. Chang, Study of high-frequency microspark-erosion of boron-doped polycrystalline diamond, Diamond and Related Materials, 94 (2019) 155-161.
    [31] P. Fonda, K. Katahira, Y. Kobayashi, K. Yamazaki, WEDM condition parameter optimization for PCD microtool geometry fabrication process and quality improvement, The International Journal of Advanced Manufacturing Technology, 63 (2012) 1011-1019.
    [32] D. Yanagida, H. Minami, K. Watanabe, Electrical Discharge Machining of PCD in Ultrapure Water, Procedia CIRP, 42 (2016) 292-296.
    [33] E. Uhlmann, M. Röhner, M. Langmack, Micro-EDM, (2010) 39-58.
    [34] H. Liu, Z. Wang, G. Chi, Y. Wang, Influence of Open-circuit Voltage on Micro Electrical Discharge Machining of Ni-Al 2 O 3 Functionally Graded Materials, Procedia CIRP, 68 (2018) 5-10.
    [35] C. Pisarciuc, STUDY OF PROCESS PARAMETERS AT ELECTRICAL DISCHARGE MACHINING OF POLYCRYSTALLINE DIAMOND, Nonconventional Technologies Review, XVII (2013) 54-58.
    [36] R. Kumar, A. Kohli, Effect of Pulse on Time on Performance Parameters of WEDM, 2014.
    [37] H. Singh, A. Singh, Effect of Pulse On/Pulse Off Time On Machining Of AISI D3 Die Steel Using Copper And Brass Electrode In EDM, in, 2012.
    [38] M. Sneddon, D. Hall, Polycrystalline Diamond: Manufacture, Wear Mechanisms, and Implications for Bit Design, Journal of Petroleum Technology - J PETROL TECHNOL, 40 (1988) 1593-1601.
    [39] S.G. Moseley, K.P. Bohn, M. Goedickemeier, Core drilling in reinforced concrete using polycrystalline diamond (PCD) cutters: Wear and fracture mechanisms, International Journal of Refractory Metals and Hard Materials, 27 (2009) 394-402.
    [40] Lin. Tze-Pin, M. Hood, G.A. Cooper, L. Xiaohong, Wear and failure mechanisms of polycrystalline diamond compact bits, Wear, 156 (1992) 133-150.
    [41] C.J. Pretorius, S. Leung Soo, D.K. Aspinwall, P.M. Harden, R. M'Saoubi, A.L. Mantle, Tool wear behaviour and workpiece surface integrity when turning Ti–6Al–2Sn–4Zr–6Mo with polycrystalline diamond tooling, CIRP Annals, 64 (2015) 109-112.
    [42] G. Yan, W. Yue, D. Meng, F. Lin, Z. Wu, C. Wang, Wear performances and mechanisms of ultrahard polycrystalline diamond composite material grinded against granite, International Journal of Refractory Metals and Hard Materials, 54 (2016) 46-53.
    [43] V.P. Astakhov, A. Stanley, Polycrystalline Diamond (PCD) Tool Material: Emerging Applications, Problems, and Possible Solutions, (2015) 1-32.
    [44] J. Liu, F. Deng, X. Lu, P. Zhang, L. Zhou, A study on structural evolution of metamorphic layer on the surface of PCD in electrical discharge machining, Diamond and Related Materials, 91 (2019) 46-53.
    [45] X. Yue, X. Yang, Molecular dynamics simulation of material removal process and crystal structure evolution in EDM with discharge on different crystal planes, The International Journal of Advanced Manufacturing Technology, 92 (2017) 3155-3165.
    [46] Y.H. Jia, J.G. Li, X.J. Lu, Study on EDM Machining Technics of Polycrystalline Diamond Cutting Tool and PCD Cutting Tool’s Life, Advanced Materials Research, 268-270 (2011) 309-315.
    [47] M. Galindo-Fernandez, C. Diver, W. Leahy, The Prediction of Surface Finish and Cutting Speed for Wire Electro-discharge Machining of Polycrystalline Diamond, Procedia CIRP, 42 (2016) 297-304.
    [48] R.H. Olsen, D.K. Aspinwall, R.C. Dewes, Electrical discharge machining of conductive CVD diamond tool blanks, Journal of Materials Processing Technology, 155-156 (2004) 1227-1234.
    [49] R.T. Marler, J.S. Arora, The weighted sum method for multi-objective optimization: new insights, Structural and Multidisciplinary Optimization, 41 (2009) 853-862.
    [50] P.N. Huu, L.B. Tien, Q.T. Duc, D.P. Van, C.N. Xuan, T.N. Van, L.N. Duc, M. Jamil, A.M. Khan, Multi-objective optimization of process parameter in EDM using low-frequency vibration of workpiece assigned for SKD61, Sādhanā, 44 (2019).
    [51] P.C. Padhi, S.S. Mahapatra, S.N. Yadav, D.K. Tripathy, Multi-Objective Optimization of Wire Electrical Discharge Machining (WEDM) Process Parameters Using Weighted Sum Genetic Algorithm Approach, Journal of Advanced Manufacturing Systems, 15 (2016) 85-100.
    [52] R.K. Fard, R.A. Afza, R. Teimouri, Experimental investigation, intelligent modeling and multi-characteristics optimization of dry WEDM process of Al–SiC metal matrix composite, Journal of Manufacturing Processes, 15 (2013) 483-494.
    [53] R. Ramakrishnan, L. Karunamoorthy, Modeling and multi-response optimization of Inconel 718 on machining of CNC WEDM process, Journal of Materials Processing Technology, 207 (2008) 343-349.
    [54] Y. Zhao, M. Kunieda, K. Abe, EDM mechanism of single crystal SiC with respect to thermal, mechanical and chemical aspects, Journal of Materials Processing Technology, 236 (2016) 138-147.
    [55] S. Kidalov, F. Shakhov, Thermal Conductivity of Diamond Composites, Materials, 2 (2009) 2467-2495.
    [56] S.N. Joshi, S.S. Pande, Development of an intelligent process model for EDM, The International Journal of Advanced Manufacturing Technology, 45 (2009) 300-317.
    [57] H. Singh, Experimental study of distribution of energy during EDM process for utilization in thermal models, International Journal of Heat and Mass Transfer, 55 (2012) 5053-5064.
    [58] Z. Chen, G. Zhang, F. Han, Y. Zhang, Y. Rong, Determination of the optimal servo feed speed by thermal model during multi-pulse discharge process of WEDM, International Journal of Mechanical Sciences, 142-143 (2018) 359-369.
    [59] Q.H. Zhang, R. Du, J.H. Zhang, Q.B. Zhang, An investigation of ultrasonic-assisted electrical discharge machining in gas, International Journal of Machine Tools and Manufacture, 46 (2006) 1582-1588.
    [60] S.H. Yeo, W. Kurnia, P.C. Tan, Electro-thermal modelling of anode and cathode in micro-EDM, Journal of Physics D: Applied Physics, 40 (2007) 2513-2521.
    [61] W. Kurnia, P.C. Tan, S.H. Yeo, Q.P. Tan, Surface roughness model for micro electrical discharge machining, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 223 (2009) 279-287.
    [62] D.W. Hahn, Raman Scattering Theory, in, 2007.
    [63] F. Tuinstra, J.L. Koenig, Raman Spectrum of Graphite, The Journal of Chemical Physics, 53 (1970) 1126-1130.
    [64] Y. Chen, L.C. Zhang, J.A. Arsecularatne, Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2: Material removal mechanism, International Journal of Machine Tools and Manufacture, 47 (2007) 1615-1624.
    [65] J. Filik, Raman spectroscopy: a simple, non-destructive way to characterise diamond and diamond-like material, Spectroscopy Europe, 2005.

    無法下載圖示 全文公開日期 2025/08/04 (校內網路)
    全文公開日期 2025/08/04 (校外網路)
    全文公開日期 2025/08/04 (國家圖書館:臺灣博碩士論文系統)
    QR CODE