簡易檢索 / 詳目顯示

研究生: 江銨畯
An-Chun Chiang
論文名稱: 輔助電極於線放電加工多晶矽之多指標最佳化研究
Multi-objective optimization of wire electrode discharge machining using assisting electrode on polycrystalline silicon
指導教授: 郭俊良
Chun-Liang Kuo
口試委員: 鍾俊輝
Chun-Hui Chung
蔡宏營
Hung-Yin Tsai
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 70
中文關鍵詞: 線放電加工輔助電極多晶矽表面改質多指標最佳化
外文關鍵詞: WEDM, assisting electrode, polycrystalline silicon, surface modification, multi-objective optimization
相關次數: 點閱:385下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為使用鋁合金輔助電極於多晶矽工件進行線放電加工,並觀測使用輔助電極時,多晶矽之材料移除率、表面粗糙度、表面合金化之加工表面。實驗前先以焦耳熱模型計算加工時所需之放電能量,並控制操作參數於區間包含:開路電壓(50-100 V)、脈衝放電時間(30-60 μs)、輔助電極厚度(0-25 mm)以及線電極速度變頻控制(120-180 unit voltage)在符合加工能量之條件下,依田口實驗陣列(L27)進行實驗驗證。數據之分析則使用統計方法之變異數分析(Analysis of variance, ANOVA)及主因子圖(Main effect plots)分析,對操作參數進行檢定,以檢出各參數對觀測指標之影響力及貢獻度,並建議該指標之最佳化參數組合。最後,建立各操作參數對指標之關係模型,在給予各指標均等權重下將方程式進行疊加,以建立多指標最佳化之方程式。實驗結果顯示,線放電加工多晶矽工件使用輔助電極可得到較高之材料移除率(7.62 mg/min)及較低之算術平均面粗糙度(Sa 5.36 μm),並對工件表面進行改質,在表面鍍附~3.48%之鋁合金。多指標最佳化的結果建議,當操作參數為開路電壓50 V、脈衝放電時間30 μs、變頻控制180單位電壓無使用輔助電極時,多指標之材料移除率值降低2.98 mg/min,表面粗糙度少許上升 Sa 2.12 μm,以及表面改質之鋁元素鍍附率些微地減少0.87 wt. %,為同步得到三指標之優化的結果。


    This study presents a state-of-the-art wire electrical discharge machining technology using assisting electrodes shaping polycrystalline silicon workpiece to improve the material removal rate, and surface roughness with surface modification. The experimental work was carried out with the consideration of the Joule heat effect under the operating parameters of open voltage (50-100 V), pulse on-time (30-60 μs), assisting electrode thickness (0-25 mm), and frequency control (120-180 unit) of servo voltage in 10-18 V. Statistical methods such as the main effect plots and ANOVA were used for determining the preferable combinations and the significance of the operating parameters, respectively. For the result showed that high material removal rate (7.62 mg/min) and low surface roughness (Sa 5.36 μm), with the aluminum content of ~3.48% were obtained on the machined surface when assisting electrodes of 15 mm were facilitated in the tests. When the single objective equations were superimposed with the predetermined weightings, the multi-objective function can be established. The preferable combination suggested open voltage of 50 V, pulse on-time of 30 μs, and frequency control of 180 unit without assisting electrode, which resulted in the least error for reduced material removal rate (63%), increasing surface roughness (7%) and reduced surface modification (73%), compared to those in the single objective optimization.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 IX 第一章 研究介紹 1 第二章 文獻回顧 2 2.1 矽晶材料之加工方式 2 2.2 線放電加工應用於矽晶之加工 2 2.3 改善矽工件導電度之線放電加工研究 6 2.4 田口實驗方法與變異數分析 7 2.5 多指標最佳化 7 第三章 實驗工作 9 3.1 實驗工作簡介 9 3.2 實驗材料 10 3.3 實驗架設與資料擷取 11 3.3.1 加工設備與測試之架設 11 3.3.2 放電加工波形量測 12 3.3.3 材料移除率量測 13 3.3.4 表面顯微組織與表面改質量測 14 3.3.5 表面粗糙度及表面形貌量測 15 3.4 實驗設計 15 3.4.1 熱電模型推導 15 3.4.2 操作參數 20 3.5 統計與分析 22 3.6 多指標最佳化 24 第四章 實驗結果與討論 25 4.1 放電波形及加工電流 25 4.2 材料移除率 29 4.3 表面型態及表面改質 33 4.4 表面形貌 38 4.4.1. 鍍附與表面形貌之關係 38 4.4.2. 表面粗糙度 39 4.5 多指標最佳化 45 第五章 結論與未來展望 50 5.1 文獻回顧總結 50 5.2 研究結果總結 50 5.3 未來展望 52 參考文獻 53 附錄 研究著作 57

    [1] A. Holt, A. Thøgersen, C. Rohr, J.-I. Bye, G. Helgesen, Ø. Nordseth, S.A. Jensen, L. Norheim, Ø. Nielsen, Surface structure of mono-crystalline silicon wafers produced by diamond wire sawing and by standard slurry sawing before and after etching in alkaline solutions, Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, IEEE, 2010, pp. 003501-003504.
    [2] G. Du, L. Zhou, P. Rossetto, Y. Wan, Hard inclusions and their detrimental effects on the wire sawing process of multicrystalline silicon, Solar Energy Materials and Solar Cells, 91 (2007) 1743-1748.
    [3] K. Ishikawa, H. Suwabe, S. Itoh, Study on slurry actions in slicing groove and slicing characteristics at multi-wire saw, Proceedings of ASPE, 2003, pp. 475.
    [4] C. Hauser, Wire saw with means for producing a relative reciprocating motion between the workpiece to be sawn and the wire, Google Patents, 2001.
    [5] W. Peng, Y. Liao, Study of electrical discharge machining technology for slicing silicon ingots, Journal of Materials Processing Technology, 140 (2003) 274-279.
    [6] P. Huijun, L. Zhidong, G. Lian, Q. Mingbo, T. Zongjun, Study of small holes on monocrystalline silicon cut by WEDM, Materials Science in Semiconductor Processing, 16 (2013) 385-389.
    [7] B. Yu, H. Lee, Y. Lin, S. Qin, F. Huang, B. Yan, Study of wire electrical discharge machining for poly-silicon, Asian Symposium for Precision Engineering and Nanotechnology, 2009.
    [8] P. Yu, H. Lee, Y. Lin, S. Qin, B. Yan, F. Huang, Machining characteristics of polycrystalline silicon by wire electrical discharge machining, Materials and Manufacturing Processes, 26 (2011) 1443-1450.
    [9] Y. Uno, A. Okada, Y. Okamoto, K. Yamazaki, S.H. Risbud, Y. Yamada, High efficiency fine boring of monocrystalline silicon ingot by electrical discharge machining, Precision engineering, 23 (1999) 126-133.
    [10] Y. Uno, A. Okada, Y. Okamoto, T. Hirano, High performance slicing method of monocrystalline silicon ingot by wire EDM, Initiatives of Precision Engineering at the Beginning of a Millennium (2002) 219-223.
    [11] J. Punturat, V. Tangwarodomnukun, C. Dumkum, Surface characteristics and damage of monocrystalline silicon induced by wire-EDM, Applied Surface Science, 320 (2014) 83-92.
    [12] J. Punturat, V. Tangwarodomnukun, C. Dumkum, Investigation of process performances and cut surface characteristics in the wire-EDMing of silicon, Advanced Materials Research, Trans Tech Publ, 2014, pp. 950-954.
    [13] P. Yu, Y. Lin, H. Lee, C. Mai, B. Yan, Improvement of wire electrical discharge machining efficiency in machining polycrystalline silicon with auxiliary-pulse voltage supply, The International Journal of Advanced Manufacturing Technology, 57 (2011) 991-1001.
    [14] M. Ge, Z. Liu, L. Shen, H. Ding, H. Chen, Z. Tian, Thickness measurement of deterioration layer of monocrystalline silicon by specific crystallographic plane cutting of wire electrical discharge machining, Journal of Materials Science: Materials in Electronics, 27 (2016) 9107-9114.
    [15] Y. Tian, M. Qiu, Z. Liu, Z. Tian, Y. Huang, Discharge cutting technology for specific crystallographic planes of monocrystalline silicon, Materials Science in Semiconductor Processing, 27 (2014) 546-552.
    [16] W. Wang, Z. Liu, Z. Tian, Y. Huang, Z. Liu, High efficiency slicing of low resistance silicon ingot by wire electrolytic-spark hybrid machining, Journal of materials processing technology, 209 (2009) 3149-3155.
    [17] D. Reynaerts, H. Van Brussel, Microstructuring of silicon by electro-discharge machining (EDM)—part I: theory, Sensors and Actuators A: Physical, 60 (1997) 212-218.
    [18] H. Lee, J. Simao, D. Aspinwall, R. Dewes, W. Voice, Electrical discharge surface alloying, Journal of Materials Processing Technology, 149 (2004) 334-340.
    [19] T. Saleh, A.N. Rasheed, A.G. Muthalif, Experimental study on improving μ-WEDM and μ-EDM of doped silicon by temporary metallic coating, The International Journal of Advanced Manufacturing Technology, 78 (2015) 1651-1663.
    [20] H. Takino, T. Ichinohe, K. Tanimoto, S. Yamaguchi, K. Nomura, M. Kunieda, High-quality cutting of polished single-crystal silicon by wire electrical discharge machining, Precision Engineering, 29 (2005) 423-430.
    [21] C. Kuo, H. Kao, H. Wang, Novel design and characterisation of surface modification in wire electrical discharge machining using assisting electrodes, Journal of Materials Processing Technology, 244 (2017) 136-149.
    [22] R.K. Roy, A primer on the Taguchi method, Society of Manufacturing Engineers, 2010.
    [23] G. Dongre, S. Zaware, U. Dabade, S.S. Joshi, Multi-objective optimization for silicon wafer slicing using wire-EDM process, Materials Science in Semiconductor Processing, 39 (2015) 793-806.
    [24] J. Marafona, J. Chousal, A finite element model of EDM based on the Joule effect, International Journal of Machine Tools and Manufacture, 46 (2006) 595-602.

    QR CODE