簡易檢索 / 詳目顯示

研究生: 史濬嘉
CHUN-CHIA SHIH
論文名稱: 最佳化演算法開發與應用於動態曲線擬合
Development and application of optimization algorithms for dynamic curve fitting
指導教授: 李安叡
An-Jui Li
口試委員: 江承家
林宏達
楊亦東
李安叡
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 111
中文關鍵詞: 地盤反應分析改良雙曲線模型基因演算法粒子群演算法混和系統
外文關鍵詞: Site response analysis, Modified hyperbolic model, Genetic algorithm, Particle swarm optimization algorithm, Hybrid system
相關次數: 點閱:461下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究深入探討了最佳化演算法與混合系統在地震工程和地盤反應分析中的應用,特別是針對台灣離岸風電結構設計的需求。研究中使用改良的雙曲線模型方法來分析離岸風機場址的土壤地盤反應分析,並利用最佳化演算法在此過程中的貢獻來提高準確性與效率。在研究中,混合系統是由基因演算法(GA)和粒子群演算法(PSO)組成,並應用於地盤反應分析中的動態參數最佳化。這些演算法和混合系統的演算法通過與現有分析軟體的結果對比,證明了其在擬合動態曲線精準度和提升運算效能上的優勢。研究還深入探討了不同演算法的混和系統方法,例如將部分群體使用GA演算法進行運算,剩餘群體使用PSO演算法進行運算後組成新一代群體,或是使用GA先進行粗略的全域搜索,再利用PSO進行精確的局部優化,從而在動態曲線擬合方面取得更高的準確性和效率。這種混合系統可以為工程設計提供更穩定、可靠的解決方案,特別是在涉及台灣離岸風電這類大型基礎設施的設計與安全性上。此外,本研究在實際應用方面,提出了一個可行的框架,可以有效應用於更複雜的工程環境。這不僅為地震工程分析提供了新的方法,還為未來的混合系統最佳化技術應用於其他地盤反應分析領域提供了參考。


    This study delves into the application of optimization algorithms and hybrid systems in earthquake engineering and ground response analysis, particularly catering to the design needs of offshore wind structures in Taiwan. The study employs a modified hyperbolic model method to analyze the soil ground response at offshore wind turbine sites and leverages optimization algorithms to enhance accuracy and efficiency in this process.In the research, the hybrid system consists of the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), which are applied for dynamic parameter optimization in ground response analysis. These algorithms and the hybrid system, compared to existing analysis software results, demonstrate their advantage in curve-fitting accuracy and computational efficiency. The study also thoroughly examines hybrid methods that combine different algorithms. For instance, some populations are processed using the GA while others are handled by the PSO, then combined into a new generation. Another approach involves using GA for a rough global search and PSO for precise local optimization, achieving higher accuracy and efficiency in dynamic curve fitting. This hybrid system can provide a more stable and reliable solution for engineering design, particularly for designing and securing large-scale infrastructures like offshore wind power in Taiwan. Furthermore, the study proposes a practical framework that can be effectively applied to more complex engineering environments. This not only offers a new perspective on earthquake engineering analysis but also serves as a reference for applying hybrid system optimization techniques in other ground response analysis fields.

    摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 論文架構 2 第二章 文獻回顧 4 2.1 地盤反應分析規範 4 2.1.1 場址地質調查 5 2.1.2 機率式地震危害度分析(PSHA) 6 2.1.3 均布危害度反應譜(UHRS) 6 2.1.4 設計地震歷時 7 2.2 地盤反應分析 7 2.2.1 分析軟體 7 2.2.2 土壤模型 8 2.3 改良雙曲線模型(MKZ MODEL) 11 2.4 梅新準則(MASING RE/UNLOADING) 15 2.5 基因演算法(GENETIC ALGORITHM) 19 2.5.1 變數定義及介紹 21 2.5.2 基因演算法運算因子 22 2.5.3 基因演算法運算流程 29 2.6 粒子群演算法(PARTICLE SWARM OPTIMIZATION, PSO) 31 2.6.1 變數定義及介紹 32 2.6.2 粒子群演算法運算因子 33 2.6.3 粒子群演算法運算流程 37 2.7 混和系統 40 第三章 研究方法 44 3.1 動態曲線之間關係架構 44 3.2 改良雙曲線模型應用 47 3.3 最佳化演算法適應值函數定義 47 3.4 演算法應用於改良雙曲線模型流程 52 3.5 基因演算法 54 3.5.1 演算法運算因子設定 54 3.6 粒子群演算法 57 3.6.1 演算法運算因子設定 57 3.7 最佳化演算法混和系統 58 3.7.1 不同演算法之間的訊息交流 59 3.7.2 基因群體演算法(GSO) 59 3.7.3 GA-PSO 和 PSO-GA 62 第四章 實驗結果與分析 66 4.1 演算法環境 66 4.2 評估指標 67 4.3 演算結果 68 4.3.1 基因演算法(Genetic Algorithm) 68 4.3.2 粒子群演算法(Particle Swarm Optimization, PSO) 72 4.3.3 基因群體演算法(GSO) 77 4.3.4 GA-PSO 81 4.3.5 PSO-GA 85 4.3.6 最佳化演算法收斂狀況 89 第五章 結論與建議 91 5.1 結論 91 5.2 建議 92 參考文獻 93

    [1] 陳湧文等人 (2020),「台灣離岸風電受震地盤反應分析探討」,第 18 屆大地 工程學術研究討論會論文集
    [2] 經濟部標準檢驗局,2018年「中華民國國家標準CNS 15176-1 風力機–第 1部:設計要求」。
    [3] 經濟部標準檢驗局,2023年「離岸風力發電場址調查及設計技術指引」。
    [4] Kondner, R. L., and Zelasko, J. S. (1963). "A hyperbolic stress-strain formulation of sands." Proc. 2nd Pan Am. Conf. on Soil Mech. and Found. Engrg., Brazilian Association of Soil Mechanics, Silo Paulo, Brazil, 289-324.
    [5] Youssef M. A. Hashash DEEPSOIL V7.0 User Manual and Tutorial.
    [6] Masing, G. (1926). "Eigenspannungen und Verfestigung beim Messing." Proc. 2nd
    [7] Int. Cong. on Appl. Mech., 332-335 (in German).
    [8] Seed, H. B. and Idriss, I. M. (1970) “Soil moduli and damping factors for dynamic response analyses.” Report No. EERC 70-10, Earthquake Engineering Research Center, University of California, Berkeley, California, 40p.
    [9] Vucetic, M., & Dobry, R. (1991). Effect of soil plasticity on cyclic response. Journal of geotechnical engineering, 117(1), 89-107.
    [10] Ramberg, W., & OSGOOD, W. (1943). Tech Note No 902. Washington, DC: NACA.
    [11] Dobry, R., Ladd, R. S., Yokel, F. Y., Chung, R. M., and Powell, D. (1982). "Prediction of pore-water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method." Building science series 183, National Bureau of Standards, U.S. Department of Commerce, U.S. Government Printing Office, Washington, D.C.
    [12] Matasović, N., & Vucetic, M. (1993). Cyclic characterization of liquefiable sands. Journal of Geotechnical Engineering, 119(11), 1805-1822.
    [13] Hardin, B. O., & Blandford, G. E. (1989). Elasticity of particulate materials. Journal of Geotechnical Engineering, 115(6), 788-805.
    [14] Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.
    [15] Kennedy, J., & Eberhart, R. C. (1997, October). A discrete binary version of the particle swarm algorithm. In 1997 IEEE International conference on systems, man, and cybernetics. Computational cybernetics and simulation (Vol. 5, pp. 4104-4108). IEEE.
    [16] Engelbrecht, A. (2012, June). Particle swarm optimization: Velocity initialization. In 2012 IEEE congress on evolutionary computation (pp. 1-8). IEEE.
    [17] Carlisle, A., & Dozier, G. (2001). Tracking changing extrema with particle swarm optimizer. Auburn Univ., Auburn, AL, Tech. Rep. CSSE01-08.
    [18] Engelbrecht, A. P. (2007). Computational intelligence: an introduction. John Wiley & Sons.
    [19] Thangaraj, R., Pant, M., Abraham, A., & Bouvry, P. (2011). Particle swarm optimization: Hybridization perspectives and experimental illustrations. Applied Mathematics and Computation, 217(12), 5208-5226.
    [20] Grimaldi, E. A., Grimaccia, F., Mussetta, M., Pirinoli, P., & Zich, R. F. (2004, November). A new hybrid genetical-swarm algorithm for electromagnetic optimization. In Proceedings. ICCEA 2004. 2004 3rd International Conference on Computational Electromagnetics and Its Applications, 2004. (pp. 157-160). IEEE.
    [21] Gandelli, A., Grimaccia, F., Mussetta, M., Pirinoli, P., & Zich, R. E. (2007, September). Development and validation of different hybridization strategies between GA and PSO. In 2007 IEEE Congress on Evolutionary Computation (pp. 2782-2787). IEEE.
    [22] Grimaldi, E. A., Grimaccia, F. R. A. N. C. E. S. C. O., Mussetta, M. A. R. C. O., Pirinoli, P., & Zich, R. E. (2005, October). Genetical swarm optimization: a new hybrid evolutionary algorithm for electromagnetic applications. In 2005 18th International Conference on Applied Electromagnetics and Communications (pp. 1-4). IEEE.
    [23] Grimaccia, F., Mussetta, M., & Zich, R. E. (2007). Genetical swarm optimization: Self-adaptive hybrid evolutionary algorithm for electromagnetics. IEEE Transactions on Antennas and Propagation, 55(3), 781-785.
    [24] Gandelli, A., Grimaccia, F., Mussetta, M., Pirinoli, P., & Zich, R. E. (2006). Genetical swarm optimization: an evolutionary algorithm for antenna design. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 47(3-4), 105-112.
    [25] Yang, B., Chen, Y., & Zhao, Z. (2007, May). A hybrid evolutionary algorithm by combination of PSO and GA for unconstrained and constrained optimization problems. In 2007 IEEE international conference on control and automation (pp. 166-170). IEEE.
    [26] Sedeh, O. M., Ostadi, B., & Zagia, F. (2021). A novel hybrid GA-PSO optimization technique for multi-location facility maintenance scheduling problem. Journal of Building Engineering, 40, 102348.
    [27] Robinson, J., Sinton, S., & Rahmat-Samii, Y. (2002, June). Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna. In IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313) (Vol. 1, pp. 314-317). IEEE.
    [28] Krink, T., & Løvbjerg, M. (2002, September). The lifecycle model: combining particle swarm optimisation, genetic algorithms and hillclimbers. In International conference on parallel problem solving from nature (pp. 621-630). Berlin, Heidelberg: Springer Berlin Heidelberg.
    [29] Juang, C. F. (2004). A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(2), 997-1006.
    [30] Settles, M., & Soule, T. (2005, June). Breeding swarms: a GA/PSO hybrid. In Proceedings of the 7th annual conference on genetic and evolutionary computation (pp. 161-168).
    [31] Jian, M. C., & Chen, Y. P. (2006, July). Introducing recombination with dynamic linkage discovery to particle swarm optimization. In Proceedings of the 8th annual conference on Genetic and evolutionary computation (pp. 85-86).
    [32] Mohammadi, A., & Jazaeri, M. (2007, September). A hybrid particle swarm optimization-genetic algorithm for optimal location of SVC devices in power system planning. In 2007 42nd International Universities Power Engineering Conference (pp. 1175-1181). IEEE.
    [33] Esmin, A. A. A., Lambert-Torres, G., & Alvarenga, G. B. (2006, December). Hybrid evolutionary algorithm based on PSO and GA mutation. In 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06) (pp. 57-57). IEEE.
    [34] Kim, H., & Park, J. I. (2006). Improvement of genetic algorithm using PSO and Euclidean data distance. International Journal of Information Technology, 12(3), 142-148.
    [35] Conradie, A. E., Miikkulainen, R., & Aldrich, C. (2002, May). Intelligent process control utilising symbiotic memetic neuro-evolution. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600) (Vol. 1, pp. 623-628). IEEE.
    [36] Shunmugalatha, A., & Slochanal, S. M. R. (2008). Optimum cost of generation for maximum loadability limit of power system using hybrid particle swarm optimization. International Journal of Electrical Power & Energy Systems, 30(8), 486-490.
    [37] Kao, Y. T., & Zahara, E. (2008). A hybrid genetic algorithm and particle swarm optimization for multimodal functions. Applied soft computing, 8(2), 849-857.
    [38] Ru, N., & Jianhua, Y. (2008, June). A GA and particle swarm optimization based hybrid algorithm. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) (pp. 1047-1050). IEEE.
    [39] Jeong, S., Hasegawa, S., Shimoyama, K., & Obayashi, S. (2009). Development and investigation of efficient GA/PSO-hybrid algorithm applicable to real-world design optimization. IEEE Computational Intelligence Magazine, 4(3), 36-44.
    [40] Esmin, A. A. A., Lambert-Torres, G., & Alvarenga, G. B. (2006, December). Hybrid evolutionary algorithm based on PSO and GA mutation. In 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06) (pp. 57-57). IEEE.
    [41] Juang, C. F. (2004). A hybrid of genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(2), 997-1006.
    [42] Settles, M., & Soule, T. (2005, June). Breeding swarms: a GA/PSO hybrid. In Proceedings of the 7th annual conference on genetic and evolutionary computation (pp. 161-168).
    [43] Valdez, F., Melin, P., & Castillo, O. (2009, August). Evolutionary method combining particle swarm optimization and genetic algorithms using fuzzy logic for decision making. In 2009 IEEE International Conference on Fuzzy Systems (pp. 2114-2119). IEEE.
    [44] Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of Life reviews, 2(4), 353-373.

    無法下載圖示
    全文公開日期 2026/08/20 (校外網路)
    全文公開日期 2026/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE