簡易檢索 / 詳目顯示

研究生: 邱閔聖
Min-san Chiu
論文名稱: 新型太陽能電池的改善與最適化
Research on New Solar Cell System: Improvement and Optimization.
指導教授: 黃炳照
Bing-joe Hwang
蘇威年
Wei-nien Su
口試委員: 陳良益
Liang-yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 237
中文關鍵詞: 光觸媒離子交換法太陽能電池光沉積法
外文關鍵詞: photocatalysts, ion exchange, solar cell, photodeposition
相關次數: 點閱:274下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為最適化新型太陽能電池(New Solar Cell-1, NSC1)系統之電極製備條件,藉此成功地提高NSC1之光電轉換效率並改善其長時間穩定性。本實驗室開發之NSC1之工作原理是利用其可見光光觸媒電極吸收光能後,光觸媒電極表面之光生電子-電洞對可分別與電解質溶液中的電化學活性物質進行氧化與還原反應,藉此將光能轉換成化學能,再透過NSC1內建之伽凡尼電池(Galvanic cell)進行放電。
    本研究以經由離子交換法合成之CuFeO2、光沉積法合成的Ag/CuFeO2、Pt/WO3作為NSC1系統之可見光光觸媒材料,並探討不同電極製備條件下對光電轉換效率的影響• 藉由調控光觸媒漿料滴定層積量找出光觸媒電極端(Solar cell part, SCP)之最適化的滴定條件為40 μL的CuFeO2漿料和20 μL的Pt/WO3漿料;而燃料電池電極端(Fuel cell part, FCP)則利用白金觸媒漿料滴定層積法、白金濺鍍法以及混合上述兩法之程序進行製備,其中以全電極白金濺鍍(F-Pt)的製備條件得以展現較佳之電化學活性。
    利用最適化的SCP端和FCP端所組裝出的NSC1系統在恆電位儀測試下,其最大開環電壓(open circuit voltage, Voc)為0.32 V。此系統之光照面積為0.56 cm2,經過計算得到的最大短路電流密度(short circuit current density, Jsc)為3.06 x 10-3 mA/cm2,且填充因子(fill factor, FF)為28.57%,其太陽能光轉換率(solar cell efficency,η)為2.79 x 10-4%。將此系統與本實驗室先前未最適化的NSC1系統相比,其太陽能電池效率改善約18倍。
    經最適化後的NSC1系統在時間長達2500秒的穩定性測試中,表現出優異的穩定性,經14次的開關燈測試下Voc皆維持一定值,Voc的改變率幾乎為0。


    This present work successfully optimized the fabrication condtions of the new solar cell (New Solar Cell-1, NSC1), which has been devolped in this reaserch group since 2011, thereby increasing the photon-to-current conversion efficiency and improving the long-term stability of it. Visible-light-driven photocatalyst CuFeO2 powder synthisized by ion-exchange method and visible-light-driven photocatalyst WO3 powder with Pt cocatalyst loaded via photodeposition served as the photocathode and the photoanode of the NSC-1, respectively. The absorption range of the as-prepared photocatalysts in this research covers almost the entire solar spectrum. The electron-hole pairs, generated while the photocatalyst are exposed under solar light, are capable of reacting electrochemical species in the electrolyte of two distinct chambers, leading the occurence of reduction and oxidation in the electrolytes to fuel the intrinsic galvanic cell within the NSC-1 for power generation.
    The optimization of the NSC-1 system in this reaserch focuses on the fabrication condtions of the electrodes. By minipulating the amount of dropped-coating photocatalyst sluury on FTO substrate, which serves as the solar cell part, SCP, and utilizing sputtering coating Pt on FTO substrate, which serves as the fuel cell part, FCP, for the hightest solar cell efficency, this present work conclued that the dropped-coating 40 μL slurry of CuFeO2 and the dropped-printing 20 μL slurry of Pt/WO3 on the SCP, meanwhile the fully coverage Pt on FTO prepared by sputtering coating served as the FCP, offered the optimized fabrication condtions for the NSC-1.
    After investigation by potential static equipment among the NSC-1 system results, 0.32 V in the open circuit voltage was observed under the exposed area of 0.56 cm2. It was found that the short circuit current density and filling factor were 3.06 x 10-3 mA/cm2 and 28.57%, respectively. The calculated solar cell efficiency of the NSC-1 device was 2.79 x 10-4%, which was higher than that of the pre-work NSC system by 18 times.
    Not only was the improvment of NSC systme on the solar cell efficiency, but it was significantly on the long term stability test. After 2500-seconds operation in which the incident light had been chopped repeatly for 14 times, the photovoltaic responds of the optimized NSC-1 remained extremely stable. That is, nearly no decay in Voc of the optimzed NSC-1 was observed.

    中文摘要I ABSTRACT〈英文摘要〉III 誌謝V 目錄VI 圖目錄X 表目錄XX 第1章緒論 1 1.1.前言 1 1.2.新型太陽能電池New Solar Cell-1(NSC1)7 1.3.研究動機與目的13 第2章文獻回顧15 2.1.太陽能電池的簡介與應用15 2.1.1.太陽能電池的基本原理16 2.1.2.太陽能電池的材料與種類 18 2.2.燃料電池的簡介與應用26 2.2.1.燃料電池的運作原理28 2.2.2.燃料電池的材料與種類31 2.3.光觸媒材料的簡介與應用35 2.3.1.光觸媒的發展與特性35 2.3.2.涵蓋可見光範圍之光觸媒的必要性用以驅動水分解40 2.3.3.銅鐵氧化物(CuFeO2)光觸媒44 2.3.4.光沉積法合成共觸媒系統 47 2.3.5.不同金屬共觸媒擔載影響 49 2.4.Z-scheme system之光電化學反應50 2.4.1.自然界的光化學轉換(Z-scheme system)50 2.4.2.雙光子光觸媒系統(Z-scheme system)51 2.5.傾斜角度沉積(GLAD)的簡介與應用56 第3章實驗部分58 3.1.實驗儀器58 3.2.實驗藥品60 3.3.實驗步驟61 3.3.1.CuFeO2產氫光觸媒之合成61 3.3.2.Ag/CuFeO2產氫光觸媒之合成63 3.3.3.Pt/WO3產氧光觸媒之合成65 3.3.4.全電極白金濺鍍(F-Pt)修飾觸媒端電極67 3.3.5.白金觸媒漿料(B-Pt) 修飾觸媒端電極68 3.3.6.多孔性白金濺鍍(P-Pt) 修飾觸媒端電極69 3.3.7.傾斜角度濺鍍白金(G-Pt) 修飾觸媒端電極70 3.3.8.NSC1的封裝與光電性質測試71 3.4.儀器原理與材料鑑定75 3.4.1.掃描式電子顯微鏡(SEM)75 3.4.2.X射線繞射儀(XRD)79 3.4.3.紫外、可見光光譜儀(Ultraviolet–visible spectroscopy,UV-Vis)83 3.4.4.穿透式電子顯微鏡 (TEM)85 3.4.5.恆電位儀(Potentiostat)86 3.4.6.交流阻抗分析(AC-Impedance)88 3.4.7.X射線光電子能譜儀(X-ray photoelectron spectroscopy,XPS)93 3.4.8.感應偶合電漿光譜儀(Inductively coupled plasma atomic emission spectrometer,ICP-AES)94 3.4.9.X光吸收光譜(X-ray Absorption Spectroscopy,XAS)95 3.4.10.X光能量色散圖譜分析(Energy Disperse Spectroscopy,EDS)96 第4章結果與討論97 4.1.光觸媒材料的鑑定與性質分析97 4.1.1.銅鐵氧化物(CuFeO2)的結構特性與光學性質分析97 4.1.2.白金氧化鎢(Pt/WO3)的結構特性與光學性質分析102 4.1.3.銀銅鐵氧化物(Ag/CuFeO2)之結構特性與光學性質分析112 4.2.以CuFeO2和Pt/WO3分別作為產氫與產氧光觸媒之NSC1系統的電性結果分析116 4.2.1.固定Pt/WO3產氧光觸媒漿料滴定量並增加CuFeO2產氫光觸媒漿料滴定量之NSC1系統的電性結果分析116 4.2.2.固定CuFeO2產氫光觸媒漿料滴定量並增加Pt/WO3產氧光觸媒漿料滴定量之NSC1系統的電性結果分析134 4.2.3.同時增加CuFeO2產氫光觸媒漿料滴定量和Pt/WO3產氧光觸媒漿料滴定量之NSC1系統的電性結果分析145 4.2.4.I-V curve光電特性測試總整理156 4.3.以不同修飾方法修飾NSC1系統之FCP端157 4.3.1.以全電極白金濺鍍(F-Pt)修飾NSC1系統中FCP的電性結果分析157 4.3.2.以傾斜角度濺鍍白金(G-Pt)修飾NSC1系統中FCP的電性結果分析168 4.3.3.以多孔性白金(P-Pt)修飾NSC1系統中FCP的電性結果分析178 4.3.4.以白金觸媒漿料滴定層積(B-Pt)修飾NSC1系統中FCP的電性結果分析188 4.3.5.I-V curve光電特性測試總整理198 4.4.以Ag/CuFeO2和Pt/WO3分別作為產氫與產氧光觸媒之NSC1系統的電性結果分析199 4.5.以NaBr作為電解液之NSC1系統的電性結果分析209 4.6.NSC1系統之FCP端和SCP端的SEM截面分析219 4.7.NSC1系統的長時間穩定性測試222 第5章總結224 第6章未來展望229 第7章參考文獻231

    1.Emst, M., Global Average Temperature and carbon dioxide concentrations, 1880-2010. The Woods Hole Research Center, 2010.
    2.Technologies, H.s.E., Securing a Stable Electric Power Supply and Reducing CO2 Emissions. HITACHI Inspire the Next, 2009.
    3.Administration, U.S.E.I., Primary energy production with renewable energy distribution. http://www.eia.gov/, 2010.
    4.REN21, Renewables 2011 Global Status Report. http://www.ren21.net/, 2011.
    5.Bensaid, S., G. Centi, E. Garrone, S. Perathoner, and G. Saracco, Towards artificial leaves for solar hydrogen and fuels from carbon dioxide. ChemSusChem, 2012. 5: p. 500-521.
    6.黃文慶, Research and Module Design of Visible-Light Photocatalyst Driven New Solar Cell System. National Taiwan University of Science and Technology - Chemical Engineering, 2012.
    7.Becquerel, E., Memoire sur les effets electriques produits sous l'influence des rayons solaires. Comptes rendus de l'Academie des Sciences, 1839. 9: p. 561-567.
    8.commons, W., Isolator-metal. http://commons.wikimedia.org/, 2013.
    9.Education, C., What's So Cool About Cool Roofs? http://continuingeducation.construction.com/, 2009.
    10.Wilson, G. and R. Hulstrom, Best Research-Cell Efficiency. National Center for Photovoltaics, 2012.
    11.Fuel Cell Today, F., AFC. http://www.fuelcelltoday.com/, 2013.
    12.Zhou, X.-D., Structure and Bonding: Solid Oxide Fuel Cells. Fuel Cells and Hydrogen Storage, 2011. 141: p. 1-32.
    13.Kreutzer, H., V. Yarlagadda, and T. Van Nguyen, Performance Evaluation of a Regenerative Hydrogen-Bromine Fuel Cell. Journal of the Electrochemical Society, 2012. 159(7): p. F331-F337.
    14.Energy, U.S.d.o.E.E.E.R., Comparison of Fuel Cell Technologies. http://www.eere.energy.gov/, 2011.
    15.Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972. 238(5358): p. 37-38.
    16.Frank, S.N. and A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. Journal of Physical Chemistry, 1977. 81(15): p. 1484-1488.
    17.李曉平,徐寶琨,劉國範等, 功能材料. 1999. 30: p. 242~245.
    18.周祖飛,蔣偉川,劉維屏, 環境科學. 1997. 18: p. 35~37.
    19.孫奉玉,吳鳴,李文釧等, 催化學報. 1998. 19: p. 121~124.
    20.陳士夫,趙夢月,陶耀武等, 環境科學. 1996. 17: p. 33~35.
    21.陳耀武,趙孟月,陳士夫等, 催化學報. 1997. 18: p. 345~347.
    22.Zhang, Q., L. Gao, and J. Guo, Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Applied Catalysis B: Environmental, 2000. 26(3): p. 207-215.
    23.K., O., Y. Y., H. Tanaka, M. Tanaka, and A. Itaya, Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Chemical Society of Japan, 1985. 58: p. 2015-2022.
    24.Kudo, A., Photocatalyst materials for water splitting. Catalysis Surveys from Asia, 2003. 7(1): p. 31-38.
    25.Trudeau, M.L. and J.Y. Ying, Nanocrystalline materials in catalysis and electrocatalysis: Structure tailoring and surface reactivity. Nanostructured Materials, 1996. 7(1-2): p. 245-258.
    26.Anpo, M., N. Aikawa, S. Kodama, and Y. Kubokawa, Photocatalytic hydrogenation of alkynes and alkenes with water over TiO2. Hydrogenation accompanied by bond fission. Journal of Physical Chemistry, 1984. 88(12): p. 2569-2572.
    27.高濂,鄭珊,張青紅, 奈米光觸媒 Nano-Photocatalyst. 2004. 1: p. 18~21.
    28.Lai, X., M. Walden, and D.W. Goodman, Onset of catalytic Activity of Gold Clustania on Titania with the Appearance of Normetallic Properties. . Science, 1998. 281: p. 1647-1650.
    29.Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-344.
    30.Akihiko, K., Photocatalyst materials for water splitting. Catalysis Surveys from Asia, 2003. 7: p. 31-38.
    31.Ikeda, S., A. Tanaka, K. Shinohara, M. Hara, J.N. Kondo, K.I. Maruya, and K. Domen, Effect of the particle size for photocatalytic decomposition of water on Ni-loaded K4Nb6O17. Microporous Materials, 1997. 9: p. 253-258.
    32.Shangguan, W. and A. Yoshida, Influence of catalyst structure and modification on the photocatalytic production of hydrogen from water on mixed metal oxide. International Journal of Hydrogen Energy, 1999. 24: p. 425-431.
    33.Shannon, R.D., D.B. Rogers, and C.T. Prewitt, Chemistry of noble metal oxides. I. Syntheses and properties of ABO2 delafossite compounds. Inorganic Chemistry, 1971. 10(4): p. 713-718.
    34.Shannon, R.D. and P.S. Gumerman, Effect of covalence on interatomic distances in Cu+, Ag+, Tl+ and Pb2+ halides and chalcogenides. Journal of Inorganic and Nuclear Chemistry, 1976. 38(4): p. 699-703.
    35.Lalanne, M., A. Barnabe, F. Mathieu, and P. Tailhades, Synthesis and thermostructural studies of a CuFe1-xCrxO2 delafossite solid solution with 0 ≤ x ≤ 1. Inorganic Chemistry, 2009. 48(13): p. 6065-6071.
    36.Mugnier, E., A. Barnabe, and P. Tailhades, Synthesis and characterization of CuFeO2+δ delafossite powders. Solid State Ionics, 2006. 177(5-6): p. 607-612.
    37.Younsi, M., A. Aider, A. Bouguelia, and M. Trari, Visible light-induced hydrogen over CuFeO2 via S2O32- oxidation. Solar Energy Materials & Solar Cells, 2005. 78(5): p. 574-580.
    38.Omeiri, S., Y. Gabes, A. Bouguelia, and M. Trari, Photoelectrochemical characterization of the delafossite CuFeO2: Application to removal of divalent metals ions. Journal of Electroanalytical Chemistry, 2008. 614(1-2): p. 31-40.
    39.Kudo, A., Z-scheme photocatalyst systems for water splitting under visible light irradiation. MRS Bulletin, 2011. 36(01): p. 32-38.
    40.Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009. 38(1): p. 253-278.
    41.Sasaki, Y., H. Nemoto, K. Saito, and A. Kudo, Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. Journal of Physical Chemistry C, 2009. 113(40): p. 17536-17542.
    42.Abe, R., T. Takata, H. Sugihara, and K. Domen, Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3-/I- shuttle redox mediator. Chemical Communications, 2005. 30: p. 3829-3831.
    43.Higashi, M., R. Abe, K. Teramura, T. Takata, O. B., and K. Domen, Two step water splitting into H2 and O2 under visible light by ATaO2N (A = Ca, Sr, Ba) and WO3 with IO3-/ I- shuttle redox mediator. Chemical Physics Letters, 2008. 452(1-3): p. 120-123.
    44.Kato, H., M. Hori, R. Konta, Y. Shimodaira, and A. Kudo, Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chemistry Letters, 2004. 33(10): p. 1348-1349.
    45.陳泓明, Synthesis of nanocrystalline CuFeO2 by ion-exchange method and its applications on hydrogen generation via visible-light-driven photocatalytic water splitting. National Taiwan University of Science and Technology - Chemical Engineering, 2010.
    46.江冠廷, CuFeO2 photocatalysts prepared by modified ion exchange method and its applications on hydrogen generation via visible-light-driven water splitting. National Taiwan University of Science and Technology - Chemical Engineering, 2011.
    47.Ochie, V., Solar Light Driven Photocatalyst Bi20TiO32: Synthesis and Photocatalytic Activity toward Water Oxidation. National Taiwan University of Science and Technology - Chemical Engineering, 2011.
    48.Zhao, Y.-P., D.-X. Ye, G.-C. Wang, and T.-M. Lu, Designing Nanostructures by Glancing Angle Deposition. SPIE - Nanotubes and Nanowires, 2003. 5219: p. 59-73.
    49.Environmental Measurement I:Gas-Solution Analytical Center,EM-I. 2013.
    50.Chatchai, P., S.-y. Kishioka, Y. Murakami, A.Y. Nosaka, and Y. Nosaka, Enhanced photoelectrocatalytic activity of FTO/WO3/BiVO4 electrode modified with gold nanoparticles for water oxidation under visible light irradiation. Electrochimica Acta, 2010. 55(3): p. 592-596.

    QR CODE