簡易檢索 / 詳目顯示

研究生: 馬震烜
Chen-Hsuan MA
論文名稱: 吹吸式工業通風氣罩之紊流擴散數值模擬
Numerical Simulations of Turbulent Diffusion in Push-pull Ventilation System
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 黃榮芳
R.F. Huang
趙修武
S.W. Chau
牛仰堯
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 105
中文關鍵詞: 計算流體力學紊流擴散吹吸式氣罩工業通風
外文關鍵詞: turbulence diffusion, industrial ventilation, computational fluid dynamics, push-pull hood
相關次數: 點閱:758下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討吹吸式通風氣罩在不同的吹氣與吸氣速度下之流場現象與特徵變化情形。吹氣端裝置於污染槽的一側,並將吸氣端裝置於相對於污染槽的另一端。因此,污染物會受到吹氣氣流的帶動,吹送至吸氣端後帶出至流場外。在數值模擬部份,本文採用標準 k-e 紊流模式模擬流動情形,並配合適當的演算法則,進而求解質量方程式,動量方程式與紊流方程式。為分析流場中濃度大小分佈情形,本研究也採用質傳方程式加以分析流場中濃度變化。本研究中模擬1.0 m 與1.5 m 的污染槽,配合污染源蒸散速度 0.03,0.05 與0.07 m/s,並以速度場、濃度場等方式呈現流場形態,除定性的分析外,並以定量的濃度量測表示流場特性。吹吸式氣罩在不同的吹吸速度配比下,流場模態基本上可以分為四種:散逸模態、過渡模態、包圍模態與強吸模態。其中包圍模態與強吸模態皆可以安全捕捉蒸氣污染物。因此,只要吹吸氣流與蒸氣的速度之配比能維持在這兩個模態內操作,氣罩的功能都是安全的,但是基於能量節約的考量,強吸模態可能就不見得需要。本研究著重於濃度的分析與量測,並由全場濃度圖判定各模態之污染物散逸情況,進而討論各模態之最佳操作範圍。研究結果顯示,即使在強吸模態下,仍有少部份污染物會散逸至氣罩捕集區域外。另一方面,本文也將吹吸式氣罩之幾何尺寸影響納入討論中,這些幾何參數包括吹氣與吸氣端擋板,吹氣與吸氣口的高度,以及吹吸氣口距液面的距離。這些幾何尺寸的影響並不顯著,但是不良的幾何尺寸設計仍會降低氣罩的效率。因此,最佳的吹吸速度配比,加上適當的幾何參數才是設計氣罩的目標。最後,對於氣罩的設計步驟做一簡單的敘述。此研究結果可供未來設計者選用或改進之參考。


    This study presents the numerical simulation on the push-pull ventilation system. The push-pull system is a device which is commonly used in capturing pollutants from large area tanks of industrial chemical processes. An air jet is blown (or pushed) from one side of a tank and collected (or pulled) by an exhaust hood on the opposite side. The function of the push flow is to cover the pollutants and bring them to the pull channel. In this study, the standard k-e turbulence model is employed to describe the flow structures and characteristics. Moreover, the turbulence mass transfer equation is adopted to show the concentration distribution above the open surface tank. We simulate the flow in tank of area by 1.0 m*1.0 m and 1.5 m*1.0 m, with the pollutant evaporation velocities varies at 0.03, 0.05, and 0.07 m/s. All the flow fields can be concluded in four dominant modes: dispersion, tansition, encapsulation, and strong suction. The push and pull flow velocities should be adjusted into encapsulation and strong suction modes to ensure all the vapor can be captured by the exhaust hood. However, if the energy usage and costs are considered, the encapsulation mode is the suitable region to operate. According to the observations, the pollutants may still disperse to the surroundings under the strong suction mode. The other geometric parameters such as the flange size, push and pull channel size, offset distance, and etc., would also have effects upon the flow characteristics. In conclusion, for a variety of lengths of tanks and pollutant evaporation velocities, the push and pull flow velocity must be matched so that the optimal operation would be generated. Furthermore, the flange size and other parameters are determined to enhance the capture efficiency of the push-pull system. The recommendations for design guidelines are introduced in this study.

    CONTENTS CHINESE ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . i ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . v CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi NOMENCLATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . x LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv 1 INTRODUCTION 1 1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 MATHEMATICAL FORMULAE AND NUMERICALMODEL 7 2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Turbulence Model (Standard k − ε Model) . . . . . . . . . . . . . 9 2.3 Turbulent Mass Transfer Equation . . . . . . . . . . . . . . . . . 12 2.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 NumericalMethods . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5.1 Grid Generation. . . . . . . . . . . . . . . . . . . . . . . . 17 2.5.2 Finite VolumeMethod . . . . . . . . . . . . . . . . . . . . 18 2.6 SOLA method and parameters . . . . . . . . . . . . . . . . . . . . 19 2.7 Validation of Proposed NumericalModel . . . . . . . . . . . . . . 20 2.7.1 Flow Patterns of wall jet . . . . . . . . . . . . . . . . . . . 20 2.7.2 Turbulent Channel Flow Passes a Square Cylinder . . . . . 20 2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 ANALYSIS OF PUSH-PULL VENTILATION SYSTEM 23 3.1 Simulations of push-pull system . . . . . . . . . . . . . . . . . . . 23 3.1.1 Length of tank L = 1.0 ms−1 . . . . . . . . . . . . . . . . 24 3.1.2 Length of tank L = 1.5 ms−1 . . . . . . . . . . . . . . . . 25 3.2 Variations of Hc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Flow Patterns and Concentration Fields . . . . . . . . . . . . . . 27 3.3.1 DispersionMode . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.2 TransitionMode . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.3 Encapsulation and Strong SuctionMode . . . . . . . . . . 29 3.4 Diagrams of CharacteristicModes . . . . . . . . . . . . . . . . . . 30 3.5 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5.1 Suggestions of ACGIH . . . . . . . . . . . . . . . . . . . . 31 3.5.2 Comparison with rules of ACGIH . . . . . . . . . . . . . . 32 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 EFFECTS OF TANK GEOMETRY AND DESIGN GUIDELINES 35 4.1 Influences of Various Geometric Parameters . . . . . . . . . . . . 36 4.1.1 Effect of Flange Size . . . . . . . . . . . . . . . . . . . . . 36 4.1.2 Effect of Offset Distance . . . . . . . . . . . . . . . . . . . 38 4.1.3 Effect of Channel Height . . . . . . . . . . . . . . . . . . . 39 4.2 Design Guidelines for Parameters . . . . . . . . . . . . . . . . . . 41 4.3 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5 CONCLUSIONS AND SUGGESTIONS 45 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 CURRICULUMVITAE . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    Bibliography
    [1] American Conference of Governmental Industrial Hygienists (ACGIH), 2001,
    Industrial Ventilation - A Manual of Recommended Practice, 24th ed., incinnati,
    Ohio, USA.
    [2] Malin, B.S., 1945, Practical pointers on industrial exhaust systems. Heat and Ventilation 42, pp. 75-82.
    [3] Cherrie, J.W. and Hamid, E.A., 1997, A push-pull ventilation system for
    use in hand soldering. In Proceedings of Ventilation ’97, pp. 658-665, CEIA,
    Ottawa, USA.
    [4] Komine, H., Tsuji, K. and Mori, T., 1997, Push and pull ventilation system
    application for foundry/welding. In Proceedings of Ventilation ’97, pp. 121-
    1130, CEIA, Ottawa, Canada.
    [5] Huang, R.F. et al., 2005, Aerodynamic Characteristics and Design Guidelines
    of Push-Pull Ventilation Systems. Annals of Occupational Hygiene 49, pp. 1-15.
    [6] Battista, W.P., 1947, Semi-lateral tank ventilation hood controls contamination, cut costs. Heat Piping Air Condition 19, pp. 85-89.
    [7] Ege, J.F. and Silverman, L., 1950, Design of push-pull exhaust systems. Heat and Ventilation 116, pp. 238-246.
    [8] Hama, G.M., 1957, Supply and exhaust ventilation for metal picking operations. Air Condition, Heat Ventilation 54, pp. 61-63.
    [9] Huebener, D.J. and Hughes, R.T., 1985, Development of push-pull ventilation. AIHA Journal 46, pp. 262-267.
    [10] Klein, M.K., 1988, A demonstration of NIOSH push-pull ventilation criteria. American Industrial Hygiene Association Journal 48, pp. 238-246.
    [11] Klein, M.K., 1986, An introductory study in centre push-pull ventilation.
    American Industrial Hygiene Association Journal 47, pp. 369-373.
    [12] Marzal, F., Gonz´alez, E., Mi˜nana, A. and Baeza, A., 2002, Influence of push element geometry on the capture efficiency of push-pull ventilation systems in surface treatment tanks. Annual of Occupational Hygiene 46, pp. 383-393.
    [13] Marzal, F., Gonz´alez, E., Mi˜nana, A. and Baeza, A., 2002, Determination
    and interpretation of total and transversal linear efficiencies in push-pull
    ventilation systems for open surface tanks. Annual of Occupational Hygiene
    46, pp. 629-635.
    [14] Heinsohn, R.J., 1991, Industrial Ventilation : Engineering Principles. Wiley, New York, USA.
    [15] Robinson, M. and Ingham, D.B., 1995, Numerical modeling of the flow patterns induced by a push-pull ventilation system. Annals of Occupational Hygiene 40, pp. 293-310.
    [16] Robinson, M. and Ingham, D.B., 1995, Recommendations for the design of
    push-pull ventilation systems for open surface tanks.Annals of Occupational
    Hygiene 40, pp. 693-704.
    [17] Rota, R., Nano, G. and Canossa, L., 2001, Design guidelines for push-pull
    ventilation systems thourgh computational fluid dynamics modeling. AIHA
    Journal 62, pp. 141-148.
    [18] Jones, W.P. and Launder, B.E., 1972, The calculation of low-Reynolds number phenomena with a two-equation model of turbulence. International Journal
    of Heat and Mass Transfer 16, pp. 1119-1130.
    [19] Hirt, C.W., Nichols, B.D. and Romero, N.C., 1975, SOLA - A Numerical
    Solution Algorithm for Transient Fluid Flow, LA-5852 technical report, Los
    Alamos Scientific Laboratory, USA.
    [20] Moin, P. and Spapart P.R., 1989, Contributions of numerical simulation data bases to the physics, modeling, and measurement of turbulence. Advances in
    Turbulence, pp.11-38, Hemisphere, New York, USA.
    [21] Rodi, W., 1980, Turbulence Models and Their Application in Hydraulics.
    IAHR, Delft, Netherlands.
    [22] C¸ engel, Y.A., 1998, Heat Transfer: A Practical Approach, pp. 660-670, Mc-Graw Hill, Reno, Nevada, USA.
    [23] Methodology, 1999, a handbook of STAR-CD, Ver. 3.10, pp. 6-9.
    [24] Versteeg, H.K. and Malalasekera W., 1995, An Introduction to Computational
    Fluid Dynamics- The Finite Volume Method, pp. 72-75, Addison Wesley Longman Ltd, London, UK.
    [25] Launder, B.E. and Spalding D.B., 1974, The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 3,
    pp. 269-289.
    [26] Gosman, A.D., Pun, W.M., Runchal, A.K., Spalding, D.B. and Wolfshtein,
    M., 1969, Heat and Mass Transfer in Recirculating Flows, Academic Press,
    London, UK.
    [27] Harlow, F.H. andWelch, J.E., 1965, Numerical calculation of time-dependent
    viscous incompressible flow of fluid with free surface. Physics of Fluid 8, pp.
    2182-2189.
    [28] Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A., 1988, Spectral
    Methods in Fluid Dynamics, Springer-Verlag, New York, USA.
    [29] Gerald, C.F. and Wheatley P.O., 1999, Applied Numerical Analysis, 6th ed.,
    Addison Wesley Longman, New York, USA.
    [30] Leonard, B.P., 1979, A stable and accurate convective modeling procedure
    based on quadratic upstream interpolation. Computer Methods in Applied
    Mechanics and Engineering 19, pp. 59-98.
    [31] Chern, M.J. and Lee, J.X., 2005, Numerical Investigation of Baffle-Plate
    Effect on Hood-Capture Flow. Journal of Fluids Engineering 127, pp. 1-5.
    [32] Acharya, S., Dutta, D., Myrum, T.A. and Baker, R.S., 1994, Turbulent
    flow past surface-mounted two-dimensional rib. Journal of Fluids Engineering
    116, pp. 238-246.
    [33] Lemos, C.M., 1992, A simple numerical technique for turbulent flows with
    free surfaces. International Journal for Numerical Methods in Fluids 15, pp.
    127-146.
    [34] Chen, T.J., 2003, Numerical Simulation of Turbulent Flow over Cube, Master
    thesis, Department of Aerospace Engineering, National Tamkang University, Taipei, Taiwan. (in Chinese)
    [35] Sue, Y.C., 1998, Development and Application of Numerical Simulation
    Technique for Free-Surface Wave Flows, Doctor thesis, Department of Engineering
    Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan. (in Chinese)

    QR CODE