簡易檢索 / 詳目顯示

研究生: 曾柏憲
Po-sain Zeng
論文名稱: 生質柴油引擎燃燒行為之數值模擬分析
Numerical Analysis of Combustion Behavior in A Biodiesel Engine
指導教授: 蘇裕軒
none
姜嘉瑞
none
口試委員: 林大惠
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 120
中文關鍵詞: 計算流體力學生質柴油柴油引擎噴油正時渦流系統
外文關鍵詞: computation fluid dynamic, biofuel, swirl system
相關次數: 點閱:303下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的為透過建立一CFD 模型, 以模擬柴油引擎在運轉過程中的各種物理行為。所使用的軟體為Ansys Fluent , 本論文中模擬所得到之結果將與實驗做相互驗證, 而實驗之平台為中華重型柴油引擎, 並且配置高壓共軌系統以及廢氣回吸系統與渦輪增壓系統。而在模擬模型中所使用之邊界條件及初始條件皆為透過實驗所得, 在進行模擬時, 其進氣氣體成分按照一般性的大氣組成來進行設定。而汽缸內之殘留氣體則透過廢氣分析儀所得到之參數進行設定。在油品部分, 在本論文中使用純柴油以及B100之生質柴油, 其油品性質為台灣中油公司所提供, 檢驗表在附錄5.1。在確定邊界條件以及操作點行為後, 在Fluent 設定中, 紊流模型採用RNG, K-epsilon equation 來模擬流場之渦流轉換行為而燃油自燃部分則使用Hardenburg model 來模擬以符合其燃燒實際行為, 以了解其流體特性的不同對於引擎的性能, 排放等等的影響。在模擬當中先使用純柴油進行在不同噴油正時下的燃燒模擬, 在實驗數據驗證過後, 再更換噴注燃油為生質柴油, 並且在相同之操作條件下模擬。本論文討論在不同的噴油正時下其燃燒的行為。在本模型中, 其模擬數據在兩種油品的三個不同噴油正時中與實驗相互驗證, 在演算的數據中顯示, 將噴油正時提前會造成燃燒相位提前在壓縮行程時發生, 導致較高之的壓力峰值, 其行為與實驗吻合, 而生質柴油燃燒速度比純柴油快的行為也可以在缸壓與汽缸內溫度中明顯觀察到。


    In this study, the numerical model of a Mitsubishi 4M42-4AT1 heavy duty
    diesel engine equipped with a turbo-charged common-rail injection system and
    an EGR system is constructed to simulate the combustion behaviors inside the
    combustion chamber. The composition of real air is adopted in setting the initial
    conditions of the intake air. The thermophysical and thermochemical properties
    of the fuels including diesel and biodiesel fuels are obtained from the Chinese
    Petroleum Corporation. The turbulence characteristics of the flow field inside the
    combustion chamber are modeled by the 2-parameter k-epsilon equations. Hardenburg’s
    phenomenological model is used to model the ignition delay of injected
    fuel. PDF model is used to simulate the flame propagation behaviors inside the
    combustion chamber.
    Experimental data including pressure and temperature histories obtained from
    in-situ running of the diesel engine are compared with the predicted results of numerical
    simulation to justify the validity of thus constructed numerical model.
    It is found that the numerical simulation gives decent predictions to the pressure
    peaks, ignition delay, and heat release rate. Numerical simulations of the same engine
    burning biodiesel fuels are also conducted. Lower peak pressures and shorter
    ignition delay than that of an engine burning D100 diesel are observed due to the
    lower low heating value and higher cetane number of biodiesel fuels, respectively.

    目錄 1 緒論1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 柴油引擎運作原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 生質柴油歷史以及發展. . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 生質柴油優缺點分析. . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.7 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 實驗設備15 2.1 實驗引擎. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2 噴油嘴. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 進排氣壓力感測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 進排氣溫度感測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5 燃油流量感測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.6 汽缸壓力感測器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.7 引擎馬力試驗機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.8 生質柴油發展. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.9 生質柴油檢驗標準. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.10 熱質檢驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 CFD 模型建立30 3.1 氣缸體積計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 閥門揚程計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 引擎模型及汽缸內流體模型建立. . . . . . . . . . . . . . . . . . . . . 39 3.4 網格建立. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5 數值模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.5.1 燃燒室內氣流之數值模型. . . . . . . . . . . . . . . . . . . . 47 3.5.2 噴嘴霧化模型. . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5.3 燃油自燃模型. . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5.4 反應速率模型. . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6 燃燒熱釋放模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.7 反應熱模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4 模擬結果58 4.1 引擎內部流場. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 噴油質量驗證. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3 改變噴油正時的影響. . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4 改變為生質柴油的影響. . . . . . . . . . . . . . . . . . . . . . . . . . 90 5 結論與未來展望98 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    [1] 王冠中, “渦輪增壓共軌柴油引擎之計算流體力學模型”National Taiwan Uni-
    versity of sience and technology, 2013.
    [2] John B. Heywood, “Internal Combustion Engine Fundamentals,”McGraw-
    Hill, 1988.
    [3] Harun M.I., H.K. Ng and S. Gan, “Evaluation of CFD Sub-models for In-
    Cylinder Light-Duty Diesel Engine Simulation,”Proceedings of ICEE 2009 3rd
    International Conference on Energy and Environment,7-8 December 2009,
    Malacca, Malaysia.
    [4] K.M. Pang, H.K. Ng, S. Gan, ”Light-Duty Diesel Engine Modelling with Integrated
    Detailed Chemistry in 3-D CFD Study,”Proceedings of ICEE 2009 3rd
    International Conference on Energy and Environment, 7-8 December 2009,
    Malacca, Malaysia.
    [5] Hu Mingjiang and Shen Chaoying, ”Research on Predicting Fuel Spray Characteristics
    of Diesel Engine,”2010 International Conference on Intelligent
    Computation Technology and Automation.
    101
    5d.
    [6] Shang Yong, Liu Fu-shui and Li Xiang-rong, “Numerical Simulation on Forced
    Swirl Combustion Chamber in Diesel Engine,”2010 International Conference
    on Digital Manufacturing and Automation.
    [7] Luo Maji, Xiang Liangshan and Li Xiong, “Numerical Simulation of the Effects
    of Combustion Chamber Geometry on Nonroad Diesel Engine Performance,”
    978-1-4244-8036-4 (2011) IEEE.
    [8] Francesco Bottone, Andreas Kronenburg, David Gosman and Andrew Marquis,
    ”Large Eddy Simulation of Diesel Engine In-cylinder Flow,” Flow Tur-
    bulence Combust (2012) 88:233-253.
    [9] F. Payri, J. Benajes, X. Margot and A. Gil, ”CFD Modeling of the In-Cylinder
    Fow in Direct-Injection Diesel Engines,” Computers and Fluids 33 (2004) 995-
    1021.
    [10] Gyeung Ho Choi, Jae Cheon Lee, Tae Yun Kwon, Chang Uk Ha, Jong Soon
    Lee, Yon Jong Chung, Yong Hoon Chang and Sung Bin Han, ”Combustion
    Characteristics of a Swirl Chamber Type Diesel Engine,”Journal of Mechan-
    ical Science and Technology 23 (2009) 3385 3392.
    [11] Sage L. Kokjohn and Rolf D. Reitz, ”Investigation of the Roles of Flame
    Propagation, Turbulent Mixing, and Volumetric Heat Release in Conventional
    and Low Temperature Diesel Combustion,”Journal of Engineering for Gas
    Turbines and Power-Transactions of the ASME Volume: 133, 2011.
    [12] R. D. Reitz and F. V. Bracco, “Mechanism of atomization of a liquid
    jet,”Physics of Fluids (1958-1988) 25.
    [13] Michael Bunce, David Snyder, Gayatri Adi, Carrie Hall, Jeremy Koehler,
    Bernabe Davila ,Shankar Kumar, Phanindra Garimella, Donald Stanton and
    Gregory Shaver,”Optimization of soy-biodiesel combustion in a modern diesel
    engine,” Fuel 90(2011)2560-2570.
    [14] N.R. Banapurmath ,P.G. Tewari and V.N. Gaitond, ”Experimental investigations
    on performance and emission characteristics of Honge oil biodiesel
    (HOME) operated compression ignition engine,”Renewable Energy 48 (2012)
    193-201.
    [15] Zhao Jinghua, Hong Wei, Li Xuejun, Xie Fangxi and Jue Li, ”Study about
    Effects of EGR and Injection Parameters on the Combustion and Emissions
    of High-pressure Common-rail Diesel Engine,”2010 2nd International Con-
    ference on Industrial Mechatronics and Automation.
    [16] L. Labecki and L.C. Ganippa, ”Effects of injection parameters and EGR on
    combustion and emission characteristics of rapeseed oil and its blends in diesel
    engines,”Fuel 98 (2012) 15-28.
    [17] M. Mani, G. Nagarajan and S. Sampath, ”An experimental investigation on
    a DI diesel engine using waste plastic oil with exhaust gas recirculation,”Fuel
    89 (2010) 1826-1832.
    103
    5d.
    [18] Donghui Qi, Michael Leick, Yu Liu and Chia-fon F. Lee, ”Effect of EGR and
    injection timing on combustion and emission characteristics of split injection
    strategy DI-diesel engine fueled with biodiesel,”Fuel 90 (2011) 1884-1891.
    [19] DAVID P. SCHMIDT, ” Cavitation in Diesel Fuel Injector Nozzles,”
    University of Wisconsin, Madison1997.
    [20] Gianluca D’Errico, Tommaso Lucchini and Frank Atzler, Rossella Rotondi,
    ”Computational Fluid Dynamics Simulation of Diesel Engines with Sophisticated
    Injection Strategies for In-Cylinder Pollutant Controls,”ENERGY and
    FUELS Volume: 26 Issue: 7 Pages: 4212-4223, 2012.
    [21] Raouf Mobasheri, Zhijun Peng and Seyed Mostafa Mirsalim, ”Analysis the
    Effect of Advanced Injection Strategies on Engine Performance and Pollutant
    Emissions in a Heavy Duty DI-Diesel Engine by CFD Modeling,”International
    Journal of Heat and Fluid Flow Volume: 33 Issue: 1 Pages: 59-69, 2012.
    [22] Kar Mun Pang,, Hoon Kiat Ng and Suyin Gan, ”Simulation of Temporal
    and Spatial Soot Evolution in an Automotive Diesel Engine Using the Moss-
    Brookes Soot Model,”Energy Conversion and Management Volume: 58
    Pages: 171-184, 2012.
    [23] B. Jayashankara and V. Ganesan, ”Effect of Fuel Injection Timing and Intake
    Pressure on the Performance of a DI Diesel Engine - A Parametric StudyUsing CFD,”Energy Conversion and Management Volume: 51 Issue: 10
    Pages: 1835-1848, 2010.
    [24] Y. Liu, Y. -T. Zhang, T. Qiu, X. Ding and Q. Xiong, ” Optimization
    research for a high pressure common rail diesel engine based on simulation,”
    International Journal of Automotive Technology, Volume: 11, No. 5,
    pp. 625-636 (2010).
    [25] Avinash Kumar Agarwal, ” Biofuels (alcohols and biodiesel) applications as
    fuels for internal combustion engines,”Progress in Energy and Combustion
    Science 33 (2007) 233-271.
    [26] Michael S. Graboski and Robert L. McCormick. ”Combustion of fat and vegetable
    oil derived fuels in diesel engines,”Elsevier Science 0360-1285/98.

    QR CODE