簡易檢索 / 詳目顯示

研究生: 楊博淵
Po-Yuan Yang
論文名稱: 以迎風面振盪噴流控制方柱流場特性
Controlling Flow Field Characteristics around a Square Prism by an Osillating Slot Jet Injected from Upstream Surface
指導教授: 黃榮芳
Rong-Fung Huang
許清閔
Ching-Min Hsu
口試委員: 張家和
Chir-Ho Chang
陳佳
Jia-Kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 337
中文關鍵詞: 方柱噴流流場控制
外文關鍵詞: jet, square cylinder, flow control
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究針對攻角為零度之二維方柱,於方柱迎風面中央射出一均勻逆向振盪噴流,以振盪噴流對橫風速度比IR (簡稱為注射比)和振盪噴流頻率對尾流渦旋逸放頻率比Rf (簡稱頻率比)為變數,探討橫風雷諾數在1339時,方柱表面流場結構、尾流區渦漩逸放特性以及振盪噴流之動態行為。在一氣動力風洞中,藉由煙霧可視化技術觀察迎風面噴流及方柱尾流之流場特徵。使用熱線風速儀量測方柱尾流區渦漩逸放頻率及其引致之上游流場不穩定性,並分析頻率以及方柱表面流場訊號之相位關係。以PIV技術量化迎風面噴流結構,並與流場可視化之特徵比對。實驗結果顯示,方柱迎風面振盪噴流之特徵模態與注射比IR和頻率比Rf具有密切之關聯性。觀察出兩種流場模態,並命名為尾流主導搖擺模態(wake-dominated flapping jet)和偏折模態 (deflected jet)。在Rf < 1.6與IR< 3 (除了Rf ≈ 1.0時為偏折模態外)以及Rf > 1.6與 0 < IR ≤ 0.8時,主要特徵為尾流主導搖擺模態;在Rf > 1.6與0.8 ≤ IR ≤ 3.0時,流場型態為偏折模態。經流場觀察及訊號分析得知,迎風面停滯點會受到下游渦旋逸放之影響而左右振盪。振盪噴流氣柱噴出時偏折之方向與上游停滯點之瞬間位置有相關性。


    The flow characteristics around a square cylinder subject to the influence of an oscillating slot jet injected from the upstream surface of the cylinder was studied by experimental methods. The Reynolds number was 1339. The temporally evolving smoke flow patterns around the square cylinder were revealed by the laser-assisted smoke flow visualization method. The frequency characteristics of the instability waves around the square cylinder were synchronously detected by hot-wire anemometers. The flow field around the upstream cylinder surface was measured by the particle image velocimetry (PIV). Two characteristic flow modes were observed within different ranges of injection ratios (IR) and frequency ratios (Rf), namely the wake-dominated flapping jet and the deflected jet, respectively. At Rf < 1.6 (except for Rf ≈ 1.0) and IR < 3 as well as Rf > 1.6 and 0 < IR ≤ 0.8, the oscillating jet presented a flapping behavior. The flapping motion of the oscillating jet was induced by the oscillating motion of the stagnation point on the upstream surface of the cylinder, which was induced by the vortex shedding in the cylinder wake. The flow pattern in this region was termed the wake-dominated flapping jet. At Rf > 1.6 and 0.8 < IR ≤ 3.0, the injected oscillating slot jet deflected to either the left or the right and attached to the upstream surface. The flow of this mode was named the deflected jet. The deflection direction was dominated by the phase difference between the jet injection timing and the oscillation motion of the vortex shedding in the cylinder wake.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 符號索引 vii 圖表索引 ix 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.2.1 鈍體尾流 2 1.2.2 射流振盪 8 1.3 研究目標 9 第二章 實驗方法與設備 10 2.1 研究構思 10 2.2 實驗設備 10 2.2.1 風洞 10 2.2.2 方柱噴流模型 12 2.3 實驗儀器與方法 13 2.3.1 自由流速的偵測 13 2.3.2 煙霧流場可視化 14 2.3.3 時序速度訊號的偵測 17 2.3.4 質點影像速度儀(Particle Image Velocimetry, PIV) 18 2.4 振盪噴流之出口特性 19 第三章 方柱上游流場特徵 20 3.1 無迎風面振盪噴流控制之方柱上游流場 20 3.2 IR = 0.3之振盪噴流控制之方柱上游流場 21 3.2.1 Rf = 0.25時的方柱表面流場型態 21 3.2.2 Rf = 0.8時的方柱表面流場型態 23 3.2.3 Rf = 1.0時的方柱表面流場型態 25 3.2.4 Rf = 2.0時的方柱表面流場型態 27 3.2.5 Rf = 6.0時的方柱表面流場型態 28 3.3 IR = 2.0之振盪噴流控制之方柱上游流場 29 3.3.1 Rf = 0.25時的方柱表面流場型態 29 3.3.2 Rf = 0.8時的方柱表面流場型態 31 3.3.3 Rf = 1.0時的方柱表面流場型態 35 3.3.4 Rf = 2.0時的方柱表面流場型態 37 3.3.5 Rf = 6.0時的方柱表面流場型態 38 第四章 方柱尾流流場特徵 40 4.1 無迎風面振盪噴流控制之方柱尾流流場 40 4.2 IR = 0.3之振盪噴流控制之方柱尾流流場 41 4.2.1 Rf = 0.25時的方柱尾流流場型態 41 4.2.2 Rf = 0.8時的方柱尾流流場型態 42 4.2.3 Rf = 1.0時的方柱尾流流場型態 42 4.2.4 Rf = 2.0時的方柱尾流流場型態 43 4.2.5 Rf = 6.0時的方柱尾流流場型態 43 4.3 IR = 2.0之振盪噴流控制之方柱尾流流場 44 4.3.1 Rf = 0.25時的方柱尾流流場型態 44 4.3.2 Rf = 0.8時的方柱尾流流場型態 46 4.3.3 Rf = 1.0時的方柱尾流流場型態 46 4.3.4 Rf = 2.0時的方柱尾流流場型態 46 4.3.5 Rf = 6.0時的方柱尾流流場型態 47 第五章 流動型態、特徵區域以及形成機制 48 5.1 流動型態 48 5.2 形成機制 49 5.3 振盪噴流之方柱上游流場特徵模態分區 55 第六章 上游流場特徵量化 56 6.1 IR = 0.3之特徵模態速度場 56 6.1.1 速度向量流線圖 56 6.1.2 紊流強度分佈圖 56 6.1.3 速度分布特性 58 6.2 IR = 2.0之特徵模態速度場 59 6.2.1 速度向量流線圖 59 6.2.2 紊流強度分佈圖 60 6.2.3 速度分布特性 61 第七章 結論與建議 63 7.1 結論 63 7.2 建議 64 參考文獻 65

    [1] Nakayama, Y., Boucher, R. F., Introduction to Fluid Mechanics, 1st ed., Butterworth-Heinemann, Oxford, Oxfordshire, United Kingdom, 1999
    [2] Lienhard, J. H., Synopsis of Lift Drag and Vortex Frequency Data for Rigid Circular Cylinders, Research Division Bulletin 300 , Washington State University, 1966.
    [3] Huang, R. F., Chen, J. M., Hsu C. M., “Modulation of surface flow and vortex shedding of a circular cylinder in the subcritical regime by self-excited vibration rod,” Journal of Fluid Mechanics, Vol. 555, 2006, pp. 321-352.
    [4] Zdravkovich, M. M., “Different modes of vortex shedding: an overview,” Journal of Fluids and Structures, Vol. 10, No. 5, 1996, pp. 427-437.
    [5] Roshko, A., “On the wake and drag of bluff bodies,” Journal of Aeronautical Sciences, Vol. 22, No. 2, 1955, pp. 801.
    [6] Tritton, D. J., “Experiments on the flow past a circular cylinder at low reynolds numbers,” Journal of Fluids Mechanics, Vol. 6, part 4, 1959, pp. 547-567.
    [7] Etkin, B., Kovbaoher, G. K., and Keefe, R. T., “Acoustic radiation froma stationary cylinder in fluid stream (Aeolian tones),” The Journal of the Acoustical Society of America, Vol. 29, No. 1, 1957, pp. 30-36.
    [8] Weaver, W., “Wind-induced vibrations in antenna members,” Journal of the Engineering Mechanics Division, ASCE, Vol. 87, No. EM1, 1961, pp. 141-165.
    [9] Gerrard, J. H., “An experimental investigation of the oscillating lift and drag of a circular cylinder shedding turbulent vortices,” Journal of Fluid Mechanics, Vol. 11, part 2, 1961, pp. 244-256.
    [10] Roshko, A., On the Development of Turbulent Wakes from Vortex Streets, NACA TN 2913, 1953.
    [11] In, K. M., Choi, D. H., and Kim, M. U., “Two-dimensional viscous flow past a flat plate,” Fluid Dynamics Research, Vol. 15, No. 1, 1995, pp. 13-24.
    [12] Dennis, S. C. R., Qiang, W., Coutanceau, M. and Launay, J. L., “Viscous flow normal to a flat plate at moderate reynolds numbers,” Journal of Fluid Mechaics, Vol. 248, Jan. 1993, pp. 605-635.
    [13] Nakamura, Y., “Vortex shedding from bluff bodies and a universal strouhal number,” Journal of Fluids and Structures, Vol. 10, No. 2, 1996, pp. 159-171
    [14] Matsumoto, M., “Vortex shedding of bluff bodies: A review,” Journal of Fluids and Structures, Vol. 13, No. 7-8, 1999, pp. 791-811.
    [15] Bearman, P. W., Trueman, D. M., “An investigation of the flow around rectangular cylinders,” Aeronautical Quarterly, Vol. 23, 1972, pp. 229-237.
    [16] Noda, H., Nakayama, A., “Free-stream turbulence effects on the instantaneous pressure and forces on cylinders of rectangular cross section,” Experiments in Fluids, Vol. 34, No. 3, 2003, pp. 332-344.
    [17] Okajima, A., “Strouhal numbers of rectangular cylinders,” Journal of Fluid Mechanics, Vol. 123, Oct. 1982, pp. 379-398.
    [18] Yang, W. J., Flow Visualization III, Proceedings of the third international symposium on flow visualization, September 6-9, 1983, pp. 381-386.
    [19] Huang, R. F., Lin, B. H., Yen, S. C., “Time-average topological flow patterns and their Influence on vortex shedding of a square cylinder in cross flow at incidence,” Journal of Fluids and Structures, Vol. 26, No. 3, 2010, pp. 406-429.
    [20] Luo, S. C., Chew, Y. T., Ng, Y. T., “Characteristics of square cylinder wake transition flows,” Physics of Fluids, Vol. 15, No. 9, 2003, pp. 2549-2559.
    [21] Rockwell, D. O., “Organized fluctuations due to flow past a square cross section cylinder,” Journal of Fluids Engineering, Vol. 99, 1977, pp. 511-516.
    [22] Kwok, K. C. S., “Effects of turbulence on the pressure distribution around a square cylinder and possibility of reduction,” Journal of Fluids Engineering, Vol. 105, 1983, pp. 140-145.
    [23] Chen, J. M., Liu, C. H., “Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream,” International Journal of Heat and Fluid Flow, Vol. 20, No. 6, 1999, pp 592-597.
    [24] Yahya Erkan Akansu*, Erhan Fırat, “Control of flow around a square prism by slot jet injection from the rear surface,” Experimental Thermal and Fluid Science, Vol. 34, February 2010, pp. 906-914.
    [25] F. Gu, J. S. Wang, X. Q. Qiao., Z. Huang., “Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates.” Journal of Fluids and Structures, Vol. 28, 2012, pp. 263-278.
    [26] Coanda, H. M., “Device for Deflecting a Stream of Elastic Fluid Projected into an Elastic Fluid,” United StatesPatent, No. 2052869, 1936.
    [27] Newman, B. G., “The Deflection of Plane Jets by Adjacent Boundaries – Coanda Effect,” in Boundary Layer and Flow Control – Its Principles and Application, Vol. 1, Ed. Lachmann, G. V., Pergamon Press, New York, 1961, pp. 232-264.
    [28] Tritton, D. J., Physical Fluid Dynamics,Second Edition, Oxford University Press, New York, 1988, pp. 150-152
    [29] Yamasaki, H., Honda, S., “A Unified Approach to Hydrodynamic Oscillator Type Flowmeters,” Journal of fluid control, Vol. 13, 1981, pp. 1-17.
    [30] Sichlichting, H.. Boundary Layer Theory, 7th ed, Mcgraw-Hill, New York, 1993, pp. 699.
    [31] Flagan, R. C., Seinfeld J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, pp. 295-307.
    [32] 莊翔竣, 以迎風面噴流控制方柱流場特性, 國立台灣科技大學機械工程研究所碩士論文, 2012

    無法下載圖示 全文公開日期 2020/07/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE