簡易檢索 / 詳目顯示

研究生: 高藝慈
I-tzu Kao
論文名稱: 比較生物相容的細菌纖維素與膠原蛋白I膜結合白藜蘆醇應用於傷口修復的效益
Compared the Benefit of Biocompatible Cellulose and Collagen I Membranes with Resveratrol in Wound Repair Application
指導教授: 洪伯達
Po-da Hong
口試委員: 房同經
Tong-jing Fang
賴信志
Hsin-chih Lai
高震宇
Chen-yu Kao
白孟宜
Meng-yi Bai
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 63
中文關鍵詞: 生物性材料生物膜細菌纖維素膠原蛋白I 膜傷口修復皮層重組
外文關鍵詞: Biomaterials, bio-membranes, bacterial cellulose, collagen I membrane, wound healing, epidermal reconstruction
相關次數: 點閱:373下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

當傷口太深或太大時則不易修復,形成由纖維母細胞所構成疤痕組織。透過人工皮取代疤痕位置是目前臨床主要使用的解決方式。材料細菌纖維素是一種天然的纖維以應用在許多醫療的應用上,因為與其他種合成纖維相比,細菌纖維素有很好的生物降解性以及再生性。此外白藜蘆醇是一種天然的多酚類,具備抗菌、抗真菌、抗發炎以及抗氧化的能力,幫助對付皮膚疾病。在本論文中,我們試著利用白藜蘆醇結合細菌纖維素覆蓋傷口,並與已使用在傷口修復明膠與膠原蛋白I結合膜(GC-I)進行比較。我們透過掃描式電子顯微鏡觀察,膜的表面上發現白藜蘆醇的顆粒。細菌纖維素的孔徑約為100~200奈米比GC-I形成的孔徑小。由結果可知,在體外試驗中,將含有白藜蘆醇的細菌纖維素膜使用人工唾液進行藥物釋放,可在10分鐘後釋放出來,幫助在貼附傷口的一開始,便提供抑制發炎反應的環境。體外測試,將人體脂肪幹細胞種植在生物膜上培養7與14天之後,使用免疫螢光染色法進行染色,確定有很好的生物相容性。此外拍照觀察傷口外觀以及透過Masson’s trichrome stain 確認使用膜覆蓋皮膚後的重建狀況。根據我們的實驗結果,使用含有白藜蘆醇的細菌纖維素因為具有很好的生物相容性以及調控發炎反應的作用,能夠提供受損皮膚一個較好的環境進行皮層的修復。


The scar formation created for covering the wound area by fibroblast, as the depth and area too extensive is difficult to repair. A promising solution to this problem is the use of skin substitutes to replace scar tissue in clinical treatments. The material, bacterial cellulose, is very attractive for medical applications due to its biodegradability and renewability compared to synthetic fibers. Resveratrol is a natural polyphenol which has antibacterial, antifungal, anti-inflammatory, and antioxidant capabilities, enabling it to act as drugs for the treatment of skin diseases. In this work, we tried to reduce probability of infectious by dressing the resveratrol contained cellulose membrane on various wounds and comparing the results to that of GC-I membrane which was reported to be used for wound healing. We observed the particles of resveratrol and the surface morphology of the membrane with a scanning electron microscope. The porous size of the cellulose membrane was about 100~200nm smaller than that of the GC-I membrane. Further experiments showed that the resveratrol can release from the membrane after 10 minutes in artificial tissue fluid in vitro, indicating that the environment for inflammation response was resisted immediately after replaced by membrane. Immuno-stain in vitro also showed that the cells on membranes for 7, and 14 days had great biocompatibility. Furthermore, the evidences of visual observation and Masson’s trichrome stain clearly indicate that the morphology of membranes-covered skin had reconstructed. According to our experimental results, resveratrol contained bacterial cellulose membranes can offer damaged skin a better environment for epithelial regeneration due to its excellent biocompatibility and inflammation regulator conjugating.

中文摘要 II Abstract III 誌謝 IV Index V Figure Index VI Table Index VIII Chapter I Introduction 1 1.1. Wound repair of skin in clinical 1 1.2. Moist wound healing 2 1.3. Bacterial cellulose as the graft in wound healing 3 1.4. Resveratrol as the nature particle for antimicrobial activity 4 1.5. Microfabricated three dimensional polymeric scaffolds for tissue engineering 5 1.6. The role of collagen in wound healing 6 Chapter II Aims 7 Chapter III Materials and Methods 8 3.1. Experimental design 8 3.2. Physical characterization 9 3.2.1. Bacterial Cellulose 9 3.2.2. Preparation of resveratrol (RSV) contained bio-cellulose membrane 9 3.2.3. Preparation of resveratrol (RSV) contained type I collagen membrane 10 3.2.4. Scanning electron microscopy (SEM) 10 3.2.5. Fourier Transform Infrared Spectroscopy (FT-IR spectroscopy) 11 3.2.6. Release time of resveratrol 11 3.3. Biocompatibility and application 12 3.3.1. In vitro biocompatibility with human adipose stem cells (hASCs) 12 3.4. Animal experiments 12 3.4.1. Animal model of epidermal debride surgery 13 3.4.2. Histology 13 3.4.2.1. Masson’s trichrome staining 13 3.4.2.2. Immunofluorescence 14 Chapter IV Results and Discussions 16 4.1. Physical characteristics 16 4.1.1. Morphology of membranes 16 4.1.2. Structure of membranes 16 4.1.3. Release time of resveratrol 17 4.2. Biocompatibility and application 23 4.2.1. In vitro biocompatibility with human adipose stem cells (hASCs) 23 4.2.2. In vivo of wound application with animal model of epidermal debride surgery 30 4.2.3. Wound healing of cellulose and collagen membranes in rats epidermal debride model 30 4.2.4. Observation the collagen structure of membranes grafted debride area by Masson’s Trichrome stain 30 4.2.5. Re-epilization of epidermal debride area after membranes preserved by Immuno-fluorescence stain 31 Chapter V Conclusions 43 References 45

1. Midwood KS, Williams LV, Schwarzbauer JE., “Tissue repair and the dynamics of the extracellular matrix,” Int J Biochem Cell Biol. 2004 Jun; 36 (6):1031-7.
2. Diegelmann RF, Evans MC., “Wound healing: an overview of acute, fibrotic and delayed healing,” Front Biosci. 2004 Jan 1; 9:283-9.
3. Papini R., “Management of burn injuries of various depths,” BMJ. 2004 Jul 17; 329(7458):158-60.
4. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E., “Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche,” Cell. 2004 Sep 3; 118(5):635-48.
5. Tumbar T., “Epithelial skin stem cells,” Methods Enzymol. 2006; 419:73-99.
6. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E., “Defining the epithelial stem cell niche in skin,” Science. 2004 Jan 16; 303(5656):359-63.
7. Papini R., “Management of burn injuries of various depths,” BMJ. 2004 Jul 17; 329(7458):158-60.
8. Shevchenko RV, James SL, James SE, “A review of tissue-engineered skin bioconstructs available for skin reconstruction,” J R Soc Interface. 2010 Feb 6; 7(43):229-58.
9. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K, “Skin tissue engineering — In vivo and in vitro applications,” Adv Drug Deliv Rev. 2011 Apr 30; 63(4-5):352-66.
10. Brown RM Jr, Willison JH, Richardson CL, “Cellulose biosynthesis in Acetobacter xylinum: Visualization of the site of synthesis and direct measurement of the in vivo process,” Proc Natl Acad Sci U S A. 1976 Dec; 73(12):4565-9.
11. Lee JW, Deng F, Yeomans WG, Allen AL, Gross RA, Kaplan DL., “Direct incorporation of glucosamine and N-acetylglucosamine into exopolymers by Gluconacetobacter xylinus (=Acetobacter xylinum) ATCC 10245: production of chitosan-cellulose and chitin-cellulose exopolymers,” Appl Environ Microbiol. 2001 Sep; 67(9):3970-5.
12. Ross P, Mayer R, Benziman M., “Cellulose biosynthesis and function in bacteria,” Microbiol Rev. 1991 Mar; 55(1):35-58.
13. Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y. “Tissue biocompatibility of cellulose and its derivatives,” J Biomed Mater Res 1989; 23(1):125–33.
14. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, et al. “Bacterial cellulose as a potential scaffold for tissue engineering of cartilage,” Biomaterials 2005; 26(4):419–31.
15. Bodin A, Concaro S, Brittberg M, Gatenholm P, “Bacterial cellulose as a potential meniscus implant,” J Tissue Eng Regen Med 2007; 1(5):406–8.
16. Fontana JD, de Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, de Souza SJ, Narcisco GP, Bichara JA, Farah LF, “Acetobacter cellulose pellicle as a temporary skin substitute,” Appl Biochem Biotechnol. 1990 Spring-Summer;24-25:253-64.
17. dos Anjos B, Novaes AB Jr, Meffert R, Barboza EP, “Clinical comparison of cellulose and expanded polytetrafluoroethylene membranes in the treatment of class II furcations in mandibular molars with 6-month re-entry,” J Periodontol. 1998 Apr; 69(4):454-9.
18. Novaes Jr AB, Novaes AB, Grissi MFM, Soares UN, Gabarra F. Gengiflex, “An alkali-cellulose membrane for GTR: histologic observations,” Braz Dent J 1993; 4(2):65–71.
19. Novaes Jr AB, Novaes AB, “Immediate implants placed into infected sites: a clinical report,” Int J Oral Maxillofac Implants 1995;10(5):609–13.
20. Novaes Jr AB, Novaes AB, “Bone formation over a TiAl6V4 (IMZ) implant placed into an extraction socket in association with membrane therapy,” Clin Oral Implants Res 1993;4(2):106–10.
21. Novaes Jr AB, Novaes AB, “Soft tissue management for primary closure in guided bone regeneration: surgical technique and case report,” Int J Oral Maxillofac Implants 1997; 12(1):84–7.
22. Salata LA, Craig GT, Brook IM, “In-vivo evaluation of a new membrane for guided bone regeneration (GBR),” J Dent Res 1995; 74(3):825.
23. Klemm D, Schumann D, Udhardt U, Marsch S, “Bacterial synthesized cellulose – artificial blood vessels for microsurgery,” Prog Polym Sci 2001; 26(9):1561–603.
24. Backdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P, “Engineering microporosity in bacterial cellulose scaffolds,” J Tissue Eng Regen Med 2008; 2(6):320–30.
25. Wippermann J, Schumann D, Klemm D, Kosmehl H, Salehi-Gelani S, Wahlers T, “Preliminary results of small arterial substitute performed with a new cylindrical biomaterial composed of bacterial cellulose,” Eur J Vasc Endovasc Surg 2009; 37(5):592–6.
26. Fontana JD, de Souza AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, et al. “Acetobacter cellulose pellicle as a temporary skin substitute,” Appl Biochem Biotechnol 1990; 24-25:253–64.
27. “Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing,” Carbohydrate Polymers 2008; 72: 43–5
28. Baur, J. A., Sinclair, D. A., “Therapeutic potential of resveratrol: the in vivo evidence,” Nat. Rev. Drug Discov. 2006; 5: 493–506.
29. Das, D. K., Maulik, N., “Resveratrol in cardioprotection: a therapeutic promise of alternative medicine,” Mol. Interv.2006; 6, 36–47.
30. Donnelly LE, Newton, R, Kennedy GE, Fenwick PS, Leung RH, Ito K, Russell RE, Barnes P J, “Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms,” Am. J. Physiol Lung Cell. Mol. Physiol. 2004; 287: L774–L783.
31. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM, “Cancer chemopreventive activity of resveratrol, a natural product derived from grapes,” Science, 1997; 275: 218–20.
32. Boocock DJ, Faust GE, Patel KR, Schinas AM, Brown VA, Ducharme MP, Booth TD, Crowell JA, Perloff M, Gescher AJ, Steward WP, Brenner DE. “Cancer Epidemiol,” Biomarkers Prev. 2007; 16: 1246–52.
33. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM., “Cancer chemopreventive activity of resveratrol, a natural product derived from grapes,” Science 1997; 275: 218–220.
34. Hadi SM, Ullah MF, Azmi AS, Ahmad A, Shamim U, Zubair H, Khan HY., “Resveratrol mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for chemoprevention of cancer,” Pharm Res. 2010 Jun; 27(6):979-88.
35. Lu CC, Lai HC, Hsieh SC, Chen JK, “Resveratrol ameliorates Serratia marcescens-induced acute pneumonia in rats,” J Leukoc Biol. 2008 Apr; 83(4):1028-37.
36. Jabbari E, Khademhosseini A, “Biologycally-responsive hybrid biomaterials,” World Science 2010
37. Lodish H, Berk A, Zipursky SL, et al. New York: W. H. Freeman, “Section 22.3 Collagen: The Fibrous Proteins of the Matrix,” Molecular Cell Biology. 4th edition, 2000.
38. Yannas IV, Burke JF, Orgill DP, Skrabut EM, “Wound tissue can utilize a polymeric template to synthesize a functional extension of skin,” Science 1982; 215:174-6.
39. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF, “Synthesis and characterization of a model extracellular matrix which induces partial regeneration of adult mammalian skin,” Proc Natl Acad Sci U S A, 1989; 86: 933-7.
40. Murphy GF, Orgill DP, Yannas IV, “Partial dermal regeneration is induced by biodegradable collagen-glycosaminoglycan grafts,” Lab Invest 1990; 62: 305-13.
41. Compton CC, Butler CE, Yannas IV, Warland G, Orgill DP, “Organized skin structure is regenerated in vivo from collageneGAG matrices seeded with autologous keratinocytes,” J Invest Dermatol 1998; 110:908-16.
42. Chamberlain LJ, Yannas IV, Hsu HP, Strichartz G, Spector M, “CollageneGAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft,” Exp Neurol 1998; 154: 315-29.
43. Wang CY, Liu JJ, Fan CY, Mo XM, Ruan HJ, Li FF, “The effect of aligned core-shell nanofibres delivering NGF on the promotion of sciatic nerve regeneration,” J Biomater Sci Polym Ed. 2012; 23(1-4):167-84.
44. Hsu WC, Spilker MH, Yannas IV, Rubin PA, “Inhibition of conjunctival scarring and contraction by a porous collageneGAG implant,” Invest Ophthalmol Vis Sci 2000; 41:2404-11.
45. Burke JF, Yannas IV, Quinby Jr WC, Bondoc CC, Jung WK, “Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury,” Ann Surg 1981; 194:413-28.
46. Stiefel D, Schiestl C, Meuli M, “Integra artificial skin for burn scar revision in adolescents and children,” Burns 2010; 36:114-20.
47. Weigert R, Choughri H, Casoli V, “Management of severe hand wounds with Integra(R) dermal regeneration template,” J Hand Surg Eur 2011; 36:185-93.
48. Gottlieb ME, Furman J, “Successful management and surgical closure of chronic and pathological wounds using Integra,” J Burns Surg Wound Care 2004; 3:4.
49. Bonechi C, Martini S, Magnani A, Rossi C, “Stacking interaction study of trans-resveratrol (trans-3,5,4'-trihydroxystilbene) in solution by Nuclear Magnetic Resonance and Fourier Transform Infrared Spectroscopy,” Magn Reson Chem. 2008 Jul; 46(7):625-9.
50. Volkmar TB, “Biofunctional Textiles and the Skin. Curr Probl Dermatol” Kanger 2006; 33: 51-66
51. Leong CW, Wong CH, Lao SC, Leong EC, Lao IF, Law PT, Fung KP, Tsang KS, Waye MM, Tsui SK, Wang YT, Lee SM, “Effect of resveratrol on proliferation and differentiation of embryonic cardiomyoblasts,” Biochem Biophys Res Commun, 2007 Aug 17; 360(1):173-80.
52. Mallery SR, Zwick JC, Pei P, Tong M, Larsen PE, Shumway BS, Lu B, Fields HW, Mumper RJ, Stoner GD, “Topical application of a bioadhesive black raspberry gel modulates gene expression and reduces cyclooxygenase 2 protein in human premalignant oral lesions,” Cancer Res. 2008 Jun 15; 68(12):4945-57.
53. Jung M, Triebel S, Anke T, Richling E, Erkel G, “Influence of apple polyphenols on inflammatory gene expression,” Mol Nutr Food Res, 2009 Oct; 53(10):1263-80.
54. Sidhu GS, Mani H, Gaddipati JP, Singh AK, Seth P, Banaudha KK, Patnaik GK, Maheshwari RK, “Curcumin enhances wound healing in streptozotocin induced diabetic rats and genetically diabetic mice,” Wound Repair Regen. 1999 Sep-Oct; 7(5):362-74.
55. Roemer K, Mahyar-Roemer M, “The basis for the chemopreventive action of resveratrol,” Drugs Today (Barc). 2002 Aug; 38(8):571-80.
56. Wang XB, Huang J, Zou JG, Su EB, Shan QJ, Yang ZJ, Cao KJ, “Effects of resveratrol on number and activity of endothelial progenitor cells from human peripheral blood,” Clin Exp Pharmacol Physiol. 2007 Nov; 34(11):1109-15.
57. Zunino SJ, Storms DH, “Resveratrol alters proliferative responses and apoptosis in human activated B lymphocytes in vitro,” J Nutr. 2009 Aug;139(8):1603-8.
58. Y.Z. Wang, B. Cao, S.X. Li, Z.H. Zang, J.Z. Zhang, H. Chen; Effect of proliferation, cell cycle, and Bcl-2s of MCF-7 cells by resveratrol. J Asian Nat Prod Res, 11 (4) (2009), pp. 380–390
59. Wang YZ, Cao B, Li SX, Zang ZH, Zhang JZ, Chen H, “Effect of resveratrol incorporated in liposomes on proliferation and UV-B protection of cells,” J Asian Nat Prod Res. 2009; 11(4):380-90.
60. San Miguel SM, Opperman LA, Allen EP, Zielinski J, Svoboda KK, “Bioactive antioxidant mixtures promoteproliferation and migration on human oral fibroblasts,” Arch Oral Biol. 2011 Aug; 56(8):812-22.
61. Winter GD., “Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig,” Nature. 1962 Jan 20; 193:293-4.
62. Hinman CD, Maibach H., “Effect of air exposure and occlusion on experimental human skin wound,” Nature. 1963 Oct 26; 200:377-8.
63. Belbachir K, Noreen R, Gouspillou G, Petibois C., “Collagen types analysis and differentiation by FTIR spectroscopy,” Anal Bioanal Chem. 2009 Oct; 395(3):829-37
64. Hernane S. B., “Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose,” Thermochimica Acta 2008; 471: 61–69
65. Shi G, Rao L, Yu H, Xiang H, Yang H, Ji R., “Stabilization and encapsulation of photosensitive resveratrol within yeast cell,” Int J Pharm. 2008 Feb 12;349(1-2):83-93.

QR CODE