簡易檢索 / 詳目顯示

研究生: 方奕閎
Yi-Hung Fang
論文名稱: 採用寬能隙元件實現應用於電動自行車之6.78 MHz無線充電器研製
Design and Implementation of a 6.78-MHz Wireless Charger for E-bike Applications Using Wide Bandgap Devices
指導教授: 林景源
Jing-Yuan Lin
邱煌仁
Huang-Jen Chiu
口試委員: 張佑丞
Yu-Chen Chang
劉宇晨
Yu-Chen Liu
邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 67
中文關鍵詞: 無線能量傳輸系統6.78 MHz氮化鎵串聯諧振轉換器
外文關鍵詞: Wireless Power Transfer system, 6.78 MHz, GaN, Series resonat converter
相關次數: 點閱:403下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文將無線能量傳輸系統應用至電動腳踏車,最終希望能實現一高效率、高功率密的無線電動腳踏車充電器。為了達成高功率密度的目標,此架構將採用較高的切換頻率6.78 MHz,雖然高的切換頻率能達到高功率密度及線圈的小型化,但也會造成功率元件的切換損失急遽的增加,因此功率元件的選用也顯得更加重要,本論文則是採用了寬能隙元件氮化鎵做為一次側全橋串聯諧振式電路架構之切換開關而二次側則是採用順向偏壓小且反向快速回復特性的蕭特基二極體作為整流器。此外為了增加線圈之間的耦合以及減少漏磁對周遭環境的影響,接收端與發送端線圈將搭配使用高頻磁性材料來達到此目的。在論文會透過限元素分析軟體Maxwell來模擬驗證電路架構、線圈設計及磁性材料設計的可行性,由於本論文是操作於固定增益點,同時也會分析在此區間遇到相位差所造成的問題,導致開關失去零電壓導通的特性,以及後續加入額外的輔助零切電路,來改善此現象。在模擬結果達到原先設計要求後,再將理論與實務結合,實現出達到計畫要求的電路成品。最終達成輸入電壓110 V、輸出電壓110 V、瓦數240 W、切換頻率6.78 MHz且最高效率為92.45 %的無線電動腳踏車充電器。


This thesis focuses on the wireless charging application of E-bike, and hopes to achieve a high efficiency, high power density wireless charger for E-bike. In order to achieve high power density, this system will use high switching frequency around 6.78 MHz. Although the high switching frequency can achieve high power density and the miniaturization of the coil, it will also cause a large of switching loss of power switches. To solve this problem, the selection of power components is more important. In this thesis, the wide band gap devices, GaN, is used as the switch of the primary side full bridge series resonant circuit, and the secondary side bridge rectifier citcuit uses the Schottky diode, it has smaller forward voltage and faster reverse recovery time. In order to increase the coupling between the coils and decrease the influences of magnetic field to surroundings, the coils will use high frequency magnetic materials to achieve this purpose. In this thesis, the analysis software Maxwell will be used to simulate the design of circuit, coil and core. Since the circuit of this thesis is operating at constant gain, it also analyzes the phase problems, causing the switches lose zero voltage switching. By adding the auxiliary circuit to improve this problem. After the simulation results meet the design requirements, the theory and practice are combined to finish the circuit. Finally, a wireless charger for E-bike with input voltage 110V, output voltage 110 V, output power 240 W, switching frequency 6.78 MHz and a maximum efficiency 92.45 % is achieved.

摘 要 Abstract 目 錄 圖索引 表索引 第一章 緒論 1.1研究動機與目的 1.2論文內容大綱 第二章 無線能量傳輸系統之等效模型 2.1串聯諧振式無線能量傳輸系統基本介紹 2.1.1半橋及全橋串聯諧振式架構 2.2基於耦合電感模型之工作區間分析選擇 第三章 無線能量傳輸系統之線圈及鐵心設計 3.1鐵心設計分析與充電樁外型介紹 3.1.1充電樁外型介紹 3.1.2變壓器模型 3.1.3激磁電感之損耗影響 3.1.4鐵心設計與分析 3.2線圈優化設計與分析及有無鐵心之比較 3.3零切電路之動作區間分析 3.4零切電路之設計 第四章 實測驗證 4.1設計與測試規格 4.2 電路元件選用 4.2.1 電路控制訊號 4.2.2 功率開關元件及輸出整流二極體 4.2.3 諧振槽設計 4.3實體電路 4.4實測波形 4.5實測數據 第五章 結論以及未來展望 5.1結論 5.2未來展望 參考文獻

[1] Hybrid Topology With Configurable Charge Current and Charge Voltage Output-Based WPT Charger for Massive Electric Bicycles, in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 3, pp. 1581-1594, Sept. 2018K. Shi, D. Zhang, Z. Zhou, M. Zhang and Y. Gu, "A Novel Phase-Shift Dual Full-Bridge Converter With Full Soft-Switching Range and Wide Conversion Range," in IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7747-7760, Nov. 2016.
[2] Optimization of the Passive Components for an S-LCC Topology-Based WPT System for Charging Massive Electric Bicycles, in IEEE Transactions on Industrial Electronics, vol. 65, no. 7, pp. 5497-5508, July 2018.
[3] V. Kindl, R. Pechanek, M. Zavrel and T. Kavalir, "Inductive coupling system for E-bike wireless charging," 2018 ELEKTRO, Mikulov, 2018, pp. 1-4, doi: 10.1109/ELEKTRO.2018.8398268.
[4] F. Musavi and W. Eberle, "Overview of Wireless Power Transfer Technologies for Electric Vehicle Battery Charging," in IET Power Electronics, vol. 7, no. 1, pp. 60-66, January 2014.
[5] P. Hu, Wireless/Contactless Power Supply: - Inductively Coupled Resonant Converter Solutions. VDM-Verlag, 2009.
[6] A. Esser and H.C. Skudelny. “A new approach to power supplies for robots,” in IEEE Transactions on Industry Applications, vol. 27, no. 5, pp 872-875, October 1990.
[7] B. H. Choi, E. S. Lee, J. H. Kim and C. T. Rim, "7m-Off-Long-Distance Extremely Loosely Coupled Inductive Power Transfer Systems Using Dipole Coils," Energy Conversion Congress and Exposition (ECCE), 2014 IEEE, Pittsburgh, PA, 2014, pp. 858-563.
[8] F. Musavi and W. Eberle, "Overview of Wireless Power Transfer Technologies for Electric Vehicle Battery Charging," in IET Power Electronics, vol. 7, no. 1, pp. 60-66, January 2014.
[9] M. Kline. "Capacitive Power Transfer" [Online], Electrical Engineering and Computer Sciences, University of California at Berkeley, CA, 2010.Available:http://digitalassets.lib.berkeley.edu/
techreports/ucb/text/EECS-2010-155.pdf[March,17 2016]
[10] S. Goma .(Nov 2012)."Capacitive Coupling Powers Transmission Module", Asia Electronics Industry (AEI) [Online], November 2012,pp.20-23
[11] W. C. Brown, “The History of Power Transmission by Radio Waves,” in IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1230-1242, September 1984.
[12] I. Mayordomo, T. Dräger, P. Spies, J. Bernhard and A. Pflaum, "An Overview of Technical Challenges and Advances of Inductive Wireless Power Transmission," in Proceedings of the IEEE, vol. 101, no. 6, pp. 1302-1311, June 2013, doi: 10.1109/JPROC.2013.2243691.
[13] Y. Kawaguchi and M. Yamada, "Experimental evaluation of A 3-kW high-efficiency inductive contactless power transfer (IPCT) system for electric vehicles," 2014 16th European Conference on Power Electronics and Applications, Lappeenranta, 2014, pp. 1-9, doi: 10.1109/EPE.2014.6910828.
[14] R. Chen et al., "Analysis and parameters optimization of a contactless IPT system for EV charger," 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, Fort Worth, TX, 2014, pp. 1654-1661, doi: 10.1109/APEC.2014.6803528.
[15] M. Kazimierczuk and D. Czarkowski, Resonant Power Converters, Wiley, 1995.
[16] C. S. Wang, G. A. Covic and O. H. Stielau, "Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems," in IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 148-157, Feb. 2004.
[17] G. Buja, M. Bertoluzzo and K. N. Mude, "Design and Experimentation of WPT Charger for Electric City Car," in IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7436-7447, Dec. 2015.
[18] Pevere, R. Petrella, C. C. Mi and Shijie Zhou, "Design of a high efficiency 22 kW wireless power transfer system for EVs fast contactless charging stations," Electric Vehicle Conference (IEVC), 2014 IEEE International, Florence, 2014, pp. 1-7.
[19] W. Zhang, S. C. Wong, C. K. Tse and Q. Chen, "Load-Independent Duality of Current and Voltage Outputs of a Series- or Parallel-Compensated Inductive Power Transfer Converter With Optimized Efficiency," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 137-146, March 2015.
[20] W. Zhang, S. C. Wong, C. K. Tse and Q. Chen, "Design for Efficiency Optimization and Voltage Controllability of Series–Series Compensated Inductive Power Transfer Systems," in IEEE Transactions on Power Electronics, vol. 29, no. 1, pp. 191-200, Jan. 2014.
[21] S. Y. Cho, I. O. Lee, S. Moon, G. W. Moon, B. C. Kim and K. Y. Kim, "Series-Series Compensated Wireless Power Transfer at Two Different Resonant Frequencies," ECCE Asia Downunder (ECCE Asia), 2013 IEEE, Melbourne, VIC, 2013, pp. 1052-1058.
[22] E. Brenner and M. Javid, Analysis of Electric Eircuits. McGraw-Hill, 1967.
[23] C. S. Wang, O. H. Stielau and G. A. Covic, "Design Considerations For a Contactless Electric Vehicle Battery Charger," in IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1308-1314, Oct. 2005.
[24] M. X. Chen and K. W. E. Cheng, "Design of flat magnetic core for inductively coupled coils in high efficiency wireless power transfer application," 2017 7th International Conference on Power Electronics Systems and Applications - Smart Mobility, Power Transfer & Security (PESA), Hong Kong, 2017, pp. 1-7, doi: 10.1109/PESA.2017.8277780.
[25] DMEGC, DN13F Material Characteristics, DMEGC. DMEGC, JUL.2014.[Online].Available:https://fericor.com/uploads/fericor/public/document/141-dn13f_material_characteristics_sl.pdf
[26] EPC, Demonstration System EPC9128 Quick Start Guide, EPC. EPC,2014.[Online].Available:https://epc-co.com/epc/Portals/0/epc/documents/guides/EPC9128_qsg.pdf
[27] 謝昕哲,雙向傳聯諧振式無線能量傳輸系統之研製,國立台灣科技大學電子工程系碩士論文,2016
[28] 簡國訓,高頻分時多相串聯-串聯諧振式無鐵芯電源轉換器,國立台灣科技大學電子工程系碩士論文,2018

無法下載圖示 全文公開日期 2025/08/25 (校內網路)
全文公開日期 2025/08/25 (校外網路)
全文公開日期 2025/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE