簡易檢索 / 詳目顯示

研究生: 游文廣
Wen-Kuang Yu
論文名稱: 植基於梯度的邊緣方向預測的改良式可回復資料隱藏演算法
Improved Reversible Data Hiding Algorithm Using Gradient-Based Edge Direction Prediction
指導教授: 鍾國亮
Kuo-Liang Chung
口試委員: 鄧惟中
Wei-Chung Teng
郭景明
Jing-Ming Guo
陳宏銘
Homer H. Chen
楊偉楨
Wei-Jen Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 37
中文關鍵詞: 可回復資料隱藏演算法
外文關鍵詞: Reversible Data Hiding Algorithm
相關次數: 點閱:221下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近,Sachnev等人提出了一種使用排序與預測法之高效能的可逆資料隱藏演算法,和現有的可逆資料隱藏演算法比較下,他們所提出的演算法可以嵌入更多數據並有較小的失真。在一般情況下,可嵌入的資料量和藏入資料後的圖像品質取決於可逆資料隱藏演算法預測的準確性。在本論文中,我們提出了基於梯度的邊緣方向預測方法以的改進版可逆資料隱藏演算法。由於所提出的基於梯度的邊緣方向預測方法能得到較準確的預測結果,所以預測誤差可形成更集中的拉普拉斯分佈。因此,我們的演算法可以得到較大的嵌入容量和產生更優質的藏入資料後圖像。對可逆資料隱藏演算法而言,決定適當的門檻值是一個十分關鍵的問題,因此我們設計了一個可以讓系統自動決定門檻值的方法來解決這個問題。此外,我們還提出了一個改良版的嵌入資料順序的決定策略以降低藏入資料後圖像的失真。透過在六張典型測試圖像驗證下,實驗結果顯示了所提出的演算法在可藏入之資料量與顯著的藏入資料後圖像之品質上的優越性能。


    Recently, Sachnev et al. presented an efficient reversible data hiding (RDH) algorithm by using the sorting and prediction schemes. Their algorithm can embed more data with less distortion when compared with existing RDH algorithms. In general, the embedding capacity and marked image quality depend on the prediction accuracy in the RDH algorithm. In this paper, we present an improved RDH algorithm based on a new gradient-based edge direction prediction (GEDP) scheme. Since the proposed GEDP scheme can generate more accurate prediction results, the prediction errors tend to form a sharper Laplacian distribution. Therefore, the proposed algorithm can guarantee larger embedding capacity and produce better quality of marked images. The determination of appropriate thresholds is also a critical issue for a RDH algorithm, so we design a new systematic way to tackle this problem. In addition, a modified embedding order determination strategy is presented to reduce the distortion of a marked image. Based on six typical test images, experimental results demonstrate the superior properties of the proposed algorithm in terms of embedding capacity and marked image quality.

    論文摘要 4 Abstract ……………………………………………………………………………………………….5 誌 謝 ……………………………………………………………………………………………….6 1. Introduction 10 2. The Proposed RHD Algorithm 13 2.1. The proposed GEDP scheme and its potential embedding benefits 13 2.2. The embedding and extraction strategies 17 2.4. The new systematic way to determine the appropriate threshold values 21 2.5. The complete procedure of proposed RDH algorithm 23 3. Experimental Results 25 4. Conclusions 30 Appendix 1 32 References 34

    [1] C. C. Chang, W. L. Tai, and C. C. Lin, “A reversible data hiding scheme based on side match vector quantization,” IEEE Trans. Circuits and Systems for Video Technology, 16(10), 1301–1308 (2006).
    [2] C. C. Chang and C. Y. Lin, “Reversible steganographic method using SMVQ approach based on declustering,” Information Sciences, 177(8), 1796–1805 (2007).
    [3] C. C. Chang, C. C. Lin, C. S. Tseng, andW. L. Tai, “Reversible hiding in DCT-based compressed images,” Information Sciences, 177(13), 2768–2786 (2007).
    [4] C. C. Chang, C. Y. Lin, and Y. H. Fan, “Lossless data hiding for color images based on block truncation coding,” Pattern Recognition, 41(7), 2347–2357 (2008).
    [5] C. C. Chang, T. D. Kieu, and W. C. Wu, “A lossless data embedding technique by joint neighboring coding,” Pattern Recognition, 42(7), 1597–1603 (2009).
    [6] R. Gonzalez and R. Woods, Digital Image Processing, Addison Wesley, Upper Saddle River, NJ (1992).
    [7] C. W. Honsinger, P. Jones, M. Rabbani, and J. C. Stoffel, “Lossless recovery of an original image containing embedded data,” US Patent# 6 278 791 (2001).
    [8] H. J. Hwang, H. J. Kim, V. Sachnev, and S. H. Joo, “Reversible watermarking method using optimal histogram pair shifting based on prediction and sorting,” KSII Trans. Internet and Information Systems, 4(4), 655–670 (2010).
    [9] L. H. J. Kamstra and A. M. Heijmans, “Reversible data embedding into images using wavelet techniques and sorting,” IEEE Trans. Image Processing, 14(12), 2082–2090 (2005).
    [10] H. J. Kim, V. Sachnev, Y. Q. Shi, J. Nam, and H. G. Choo, “A novel difference expansion transform for reversible data embedding,” IEEE Trans. Information Forensics and Security, 3(3), 456–465 (2008).
    [11] J. H. Lee and M. Y. Wu, “Reversible data-hiding method for palette-based images”, Optical Engineering 47(4), 047008-1– 047008-9 (2008).
    [12] C. C. Lin, W. L. Tai, and C. C. Chang, “Multilevel reversible data hiding based on histogram modification of difference images,” Pattern Recognition, 41(12), 3582–3591(2008).
    [13] L. Luo, Z. Chen, M. Chen, X. Zeng, and Z. Xiong, “Reversible image watermarking using interpolation technique,” IEEE Trans. Information Forensics and Security, 5(1), 187–193 (2010).
    [14] S. Mallat, AWavelet Tour of Signal Processing, 2nd Ed., Academic Press, Orlando,FL (1999).
    [15] Y. Q. Ni, N. A. Shi, and W. Su, “Reversible data hiding,” IEEE Trans. Circuits and Systems for Video Technology, 16(3), 354–362 (2006).
    [16] E. Parzen, Modern Probability Theory and Its Applications, John Wiley and Sons,New York (1960).
    [17] V. Sachnev, H. J. Kim, S. Xiang, and J. Nam, “An improved reversible difference expansion watermarking algorithm,” in The 6th International Workshop on Digital Watermarking (IWDW 2007), Guangzhou, China, pp. 254–263 (2007).
    [18] V. Sachnev, H. J. Kim, J. Nam, S. Suresh, and Y. Q. Shi, “Reversible watermarking algorithm using sorting and prediction,” IEEE Trans. Circuits and Systems for Video Technology, 19(7), 989–999 (2009).
    [19] W. L. Tai, C. M. Yeh, and C. C. Chang, “Reversible data hiding based on histogram modification of pixel differences,” IEEE Trans. Circuits and Systems for Video Technology,19(6), 906–910 (2009).
    [20] C. L. Tsai, H. F. Chiang, K. C. Fan, and C. D. Chung, “Reversible data hiding and lossless reconstruction of binary images using pairwise logical computation mechanism,”Pattern Recognition, 38(11), 1993–2006 (2005).
    [21] D. M. Thodi and J. J. Rodriguez, “Expansion embedding techniques for reversible watermarking,” IEEE Trans. Image Processing, 16(3), 721–730 (2007).
    [22] J. Tian, “Reversible data embedding using a difference expansion,” IEEE Trans.Circuits and Systems for Video Technology, 13(8), 890–896 (2003).
    [23] C. D. Vleeschouwer, J. F. Delaigle, and B. Macq, “Circular interpretation of bijective transformations in lossless water- marking for media asset management,” IEEE Trans. Multimedia, 5(1), 97–105 (2003).

    QR CODE