簡易檢索 / 詳目顯示

研究生: 余銘容
Ming-Jung Yu
論文名稱: 可變拓樸機構之動力學分析與最佳化尺度合成
Dynamic Analysis and Optimal Dimensional Synthesis of Mechanisms with Variable Topologies
指導教授: 鄧昭瑞
Geo-Ry Tang  
口試委員: 蔡高岳
Kao-Yueh Tsai  
黃緒哲
Shiuh-Jer Huang  
黃世欽
Shyh-Chin Huang
王勵群
Li-Chun Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 108
中文關鍵詞: 可變拓樸機構動力學分析最佳化尺度合成能量流程圖
外文關鍵詞: Mechanisms with Variable Topologies, Dynamic Analysis, Optimal Dimensional Synthesis, Bond Graph
相關次數: 點閱:208下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對可變拓樸機構之動力學分析與最佳化尺度合成方法進行研究。文中提出一種利用能量流程圖模型來解決因機構拓樸變化而衍生的動力學問題,藉以進行機構分析與動作模擬。進而以此模型系統的動態輸出為性能目標函數,進行最佳化尺度合成。
    從可變拓樸機構動力學的觀點考量,拓樸構形的變化往往伴隨著桿件間的接觸使接頭形式改變,其接觸可能為非碰撞接觸或碰撞接觸。吾人提出以切換式共流結與切換式共勢結的能量流程圖模型,來分別解決非碰撞接觸與碰撞接觸的不接續運動問題。特別是碰撞接觸類的機構動作涉及機械碰撞的拓樸構形變化,其動態模擬與碰撞衝擊力的演算很難以傳統的動力學分析方法處理。因此,本文採用能量流程圖中獨特的切換式共勢結來處理機構構形變化,以及Hertz 接觸理論計算碰撞衝擊所產生的連續接觸力,以建立能量流程圖模型,進行機構動力學分析與動作模擬。此外,並提出利用簡單的校正試驗取樣數據,求取模型系統中不易推算之物理參數的方法。
    利用建構完成的能量流程圖模型及其參數化結構特性,吾人接著進行尺度合成最佳化方法的研究。首先分別採用採取統計理論中的田口方法與一般常用有限差分分析法進行靈敏度分析比較,以選定影響程度較大的系統參數作為最佳化的設計變數。接著提出一種多目標函數最佳化策略,來建立經濟學上最佳化理論中兩目標函數的Pareto 前線關係曲線,藉以暸解其物理關聯性,作為選定最佳化解的決策依據。
    由於電力傳輸系統的高壓斷路器脫扣機構動作涉及機械碰撞的拓樸構形變化,是一種典型的可變拓樸機構。因此,將本文的分析方法與最佳化演算策略應用在24kV斷路器產品上,進行實際演練驗證。最佳化結果顯示,透過少數零件尺寸的小幅修改,便可獲得不錯的具體效果。並且經由實際修改產品零組件及實際測試,證實本演算法則的有效性。


    This dissertation deals with dynamic analysis and optimal dimensional synthesis of mechanisms with variable topologies(MVT). An energy-based bond graph model is developed for solving the topological changing characteristics of the mechanism to simplify the tasks of dynamic analysis and motion simulation. The output of the model can also be utilized for evaluating the performance indices of the optimal dimensional synthesis problem of the mechanism.
    From the dynamics point of view, topology change of mechanisms is due to the change of joint type of adjacent links, and which can be identified based on the form of contact. In general, the contacting form between two links can be classified into non-impact contact and impact contact. The discontinuity characteristics of these two types of contact can be handled in the bond graph model respectively by using switched one-junction and switched zero-junction. However, it is difficult to simulate the dynamic response of the MVT with impact contact by using traditional dynamic analysis methods, because it involves not only impact mechanics but also the change of topology. Therefore, in this dissertation, a special switched zero-junction module is employed in the bond graph to handle the topology change, and the Hertz contact theory is adopted for computing the continuous contacting force due to the impact contact. In addition, a method based on the use of simple experiment data is developed for calibrating some system parameters which are difficult to be estimated.
    On the basis of the bond graph model and its parametric properties, an effective procedure is developed for synthesizing the optimal dimensions of the mechanism. The design variables of the optimization problem are first determined by performing sensitivity analysis toward the system parameters using the Taguchi method and finite difference algorithm. A multi-objective optimization is then developed for generating the Pareto frontier found in economics to evaluate the correlations between these two objective functions for making a favorable decision.
    The trigger mechanism of high voltage circuit breaker is a typical MVT with impact contact, therefore it is chosen as a practical example to demonstrate the accuracy and effectiveness of the presented methods. It is shown that noticeable performance improvement of the device can be achieved with only minor modification of the dimensions. The simulation results are verified by performing real performance tests on a prototype mechanism fabricated based on the optimized dimensions.

    中文摘要I 英文摘要III 誌 謝V 符號索引IX 圖表索引XII 第一章 緒論1 第二章 能量流程圖法之介紹11 2.1能量流程圖法基本原理介紹12 2.2能量流程圖法基本元件定義及說明15 2.2.1單埠元件16 2.2.2雙埠元件18 2.2.3多埠元件19 2.3能量流程圖法因果關係之定義及說明21 2.3.1單埠元件的因果關係22 2.3.2雙埠元件與多埠元件的因果關係23 2.4利用能量流程圖法建立動態模擬系統的步驟24 2.5範例27 第三章 可變拓樸機構簡介31 3.1封閉鏈31 3.2開放鏈32 3.3變化鏈32 3.3.1單一拓樸構形多自由度輸入的變化鏈33 3.3.2多拓樸構形多自由度輸入的變化鏈34 3.3.3多拓樸構形單一自由度輸入的變化鏈34 3.4可變拓樸機構35 第四章 可變拓樸機構的能量流程圖模型與數學模式39 4.1非碰撞接觸類39 4.2碰撞接觸類40 4.3範例44 第五章 脫扣機構之動力學分析49 5.1機構之構形與動作原理49 5.2機構之動作順序與構形變化54 5.3能量流程圖模型系統建構與數學式推導57 5.4數值模擬分析65 5.5實驗數據收集70 5.6物理參數校正73 5.7數據比對分析與驗證74 第六章 脫扣機構之最佳化尺度合成76 6.1脫扣掛鈎凸輪與滾子最大接觸應力之數學式推導76 6.2最佳化設計變數的靈敏度分析79 6.2.1有限差分靈敏度分析法80 6.2.2 田口法靈敏度分析法82 6.2.3最佳化設計變數的選定84 6.3多目標函數之定義與數學式推導85 6.4多目標函數最佳化之策略與演算方法86 6.5最佳化範例與實驗驗證87 第七章 結論與建議93 參考文獻96 附錄A 曲柄滑塊機構曲柄角速度與滑塊速度關係式的推導103 附錄B 四連桿日內瓦機構角速度關係式的推導105

    [1] Suh, C. H., Radcliffe, C. W., Kinematics and Mechanisms Design, John Wiley & Sons(1978)
    [2] Liu, N. T., “Configuration Synthesis of Mechanisms with Variable Chains,” Ph.D. Dissertation, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan(2001)
    [3] Yan, H. S., Kuo, C. H., “Topological Representation and Characteristics of Variable Kinematic Joints,” ASME Transactions, Journal of Mechanical Design, Vol.128, pp. 384-391(2006)
    [4] Kang, C. H., “Configuration Synthesis of Mechanisms with Variable Topologies,” Ph.D. Dissertation, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan(2008)
    [5] Gilmore, B. J., Cipra, R.J., “Simulation of Planar Dynamic Mechanical Systems with Changing Topologies,” ASME Journal of Mechanical Design, Vol. 113, pp. 70-83(1991)
    [6] Controllab Products, 20-sim version 3.6., Hengelosestraat 705, 7521 PA Enschede, the Netherlands(2006)
    [7] Osborne, M. J., Rubenstein, A., A Course in Game Theory, MIT Press, pp. 121-123(1994)
    [8] Furbringer, J. M., “Sensitivity Analysis for Modelers,” Air Infiltration Review, Vol. 17, No. 4, pp. 8-10(1996)
    [9] Dow, John O., A Unified Approach to the Finite Element Method and Error Analysis Procedures, San Diego : Academic Press(1999)
    [10] Krottmaier, J., Optimizing Engineering Designs, McGraw-Hill(1993)
    [11] Bazaraa, M.S., Sherali, H.D., Shetty C.M., Nonlinear Programming, Theory and Algorithms, John Wiley & Sons, pp. 283-287(1990)
    [12] NEMA Circuit Breaker Section, “What is the purpose of a Circuit Breaker?,” Electrical Construction & Maintenance, Vol. 93, No. 7, pp. 22-26(1994)
    [13] IEC 62271-100:2003, High-voltage switchgear and controlgear-Part100: High-voltage alternating-current circuit-breakers, International Standard of International Electrotechnical Commission(2003)
    [14] Lequesne, B., “Dynamic Model of Solenoids under Impact Excitation, Including Motion and Eddy Currents – Part II,” IEEE Transactions on Magnetics, Vol. 26, pp. 1107-1116(1990)
    [15] Marielle, P., Sangha, P., et al., “Rapid Computer-Aided Design Method for Fast-Acting Solenoid Actuators,” IEEE Transactions on Industry Applications, Vol. 35, pp. 991-999(1999)
    [16] Pawlak, A. M., Nehl, T. W., “Transient Finite Element Modeling of Solenoid Actuators: The Coupled Power Electronics, Mechanical, and Magnetic Field Problems,” IEEE Transactions on Magnetics, Vol. 24, pp. 270-273(1988)
    [17] Sheth, P. N., Uicker, J. J. Jr., “IMP(Integrated Mechanisms Program),” ASME Transactions, Journal of Engineering for Industry, Vol. 94, No. 2, pp. 454-464(1988)
    [18] Mechanical Dynamics Inc. Products, Adams 2005 r2(2005)
    [19] Root, R. R., Ragsdell, K. M., “Circuit Breaker– A Practical Example in Engineering Optimization,” Mechanism & Machine Theory, Vol. 18, No. 3, pp. 229-235(1983)
    [20] Schuldt, S. B., Gabriele, G. A., et al., “Application of a New Penalty Function Method to Design Optimization,” ASME Transactions, Journal of Engineering for Industry, Vol. 99B, No. 1, pp. 31-36(1977)
    [21] Chen, F. C., “Dimensional Synthesis and Optimization of Spring-Type Operating Mechanism for SF6 Gas Insulated Circuit Breaker,” Journal of the Chinese Society of Mechanical Engineers, Vol. 22, No. 2, pp. 141-151(2001)
    [22] Jung, S. P., Jun, K. J., et al.,” An Optimum Design of a Gas Circuit Breaker Using Design of Experiments,” Mechanics Based Design of Structures and Machines, Vol. 36, pp. 346-363(2008)
    [23] Paynter, H. M., Analysis and Design of Engineering Systems, MIT Press(1961)
    [24] 王中雙,鍵結圖理論及其在系統動力學中的應用,哈爾濱工程大學出版社,哈爾濱(1999)。
    [25] Karnopp, D. C., Rosenberg, R. C., “Application of Bond Graph Techniques to the Study of Vehicle Drive Line Dynamics,” ASME Transactions, Journal of Dynamic System, Measurement and Control, Vol. 92, No. 2, pp. 355-362(1970)
    [26] Margolis, D. L., Karnopp, D. C., “Bond Graph for Flexible Multibody Systems,” ASME Transactions, Journal of Dynamic System, Measurement and Control, Vol. 101, No. 1, pp. 50-57(1979)
    [27] Karnopp, D. C., Margolis, D. L., “Analysis and Simulation of Planar Mechanical Systems Using Bond Graph,” ASME Transactions, Journal of Mechanical Design, Vol. 101, No. 2, pp. 187-191(1979)
    [28] Perelson, A. S., “Description of Electrical Networks Using Bond Graphs,” International Journal of Circuit Theory and Applications, Vol. 4, No. 2, pp. 107-123(1976)
    [29] Trzaska, Z., “On the Use of the Bond Graph for Linear Electrical Network Studies,” Rozpr. Electrotech., Vol. 25, No. 4, pp. 835-848(1979)
    [30] Auslander, D. M., Oster, G.., Perelson, A.., Clifford, G.., “On Systems with Couple Chemical Reaction and Diffusion,” ASME Transactions, Journal of Dynamic System, Measurement and Control, Vol. 94, No. 3, pp. 239-248(1972)
    [31] Margolis, D. L., “An Introduction to Bond Graph Techniques for Biomedical System Modeling,” Simulation, Vol. 25, No. 1, pp. 22-26(1975)
    [32] Karnopp, D. C., Margolis, D. L., Rosenberg, R. C., System Dynamics: a Unified Approach, John Wiley & Sons(1990)
    [33] Tsai, L. W., Mechanism Design : Enumeration of Kinematic Structures According to Function, CRC Press(2001)
    [34] 顏鴻森,機構學,東華書局,台北(1997)。
    [35] 黃健勇,「手提箱按鍵鎖之構造」,中華民國發明專利,52298(1983)。
    [36] Chironis, N. P., Mechanisms & Mechanical Devices Sourcebook, McGraw-Hill(1991)
    [37] Breedveld, P. C., “Modelling & Simulation of Bouncing Objects: Newton’s Cradle Revisited,” Proc. of Mechatronics 2002, University of Twente, pp. 810-819(2002)
    [38] Hunt, K. H., Crossley, F. R. E., “Coefficient of Restitution Interpreted as Damping in Vibroimpact,” ASME Transactions, Journal of Applied Mechanics, Vol. 42, pp. 440-445(1975)
    [39] Lankarani, H. M., Nikravesh, P. E., “Continuous Contact Force Models for Impact in Multibody Systems,” Nonlinear Dynamics, Vol. 5, pp. 193-207(1994)
    [40] Goldsmith, W., Impact, the Theory and Physical Behavior of Colliding Solids, London: Edward Arnold Publishers(1960)
    [41] Paul, B., Kinematics and Dynamics of Planar Machinery, Englewood Cliffs: Prentice-Hall Inc.(1979)
    [42] 20-sim 3.6, User Manual of 20-sim version 3.6., Controllab Products (2006)
    [43] Programma Products, Circuit Breaker Analyzer System TM1600/MA61 (2008)
    [44] Redlake [Kodak] Products, Motion scope M3(2006)
    [45] Boresi, A. P., Sidebottom, O. M., et al., Advanced Mechanics of Materials, John Wiley & Sons, pp. 613-615(1978)
    [46] Venkataraman, P., Applied Optimization with MATLAB Programming, John Wiley & Sons, pp. 198-200(2002)
    [47] Reklaitis, G.. V., Ravindran, A., Ragsdell, K. M., Engineering Optimization: Methods and Applications, John Wiley & Sons, pp. 573-574 (1983)
    [48] Low, T. S., Gao, X., “Robust Torque Optimization for BLDC Spindle Motors” IEEE Transaction on Industrial Electronics, Vol. 48, No. 3, pp. 656-662 (2001)

    QR CODE