簡易檢索 / 詳目顯示

研究生: 周昭武
Chao-Wu Chou
論文名稱: 車輛節能低碳的技術創新與再生能源供應鏈管理影響環境永續發展之研究
The impact of fuel-efficient, low-carbon innovation for vehicles and renewable energy supply chain management on the sustainable development: An empirical study
指導教授: 廖文志
Wen-Chih Liao
口試委員: 吳克振
Cou-Chen Wu
張順教
Shun-Chiao Chang
陳松柏
Sung-Po Chen
戴維舵
Wei-tao Tai
學位類別: 博士
Doctor
系所名稱: 管理學院 - 管理研究所
Graduate Institute of Management
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 92
中文關鍵詞: 全球暖化溫室效應技術創新永續發展再生能源供應鏈管理
外文關鍵詞: global warming, greenhouse effect, technical innovation, sustainable development, renewable energy, supply chain management
相關次數: 點閱:300下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類藉由改善居住環境以提升生活品質, 不得不大量使用自然資源, 這本是無可厚非的。但是, 隨著人口的快速成長以及科技的大步躍進, 伴隨而來的水汙染、空氣汙染、土石流、土地沙漠化、臭氧層破壞、物種滅絕、全球暖化及氣候變遷等現象, 已對地球上的動物、植物以及人類文明構成巨大的威脅。其中, 由於溫室氣體排放量巨增所帶來的溫室效應(Greenhouse effect), 已造成嚴重的全球暖化(global warming)問題, 更是讓各國政府亟需採取對策以解決的頭痛問題。為了對付全球暖化這個課題,研究機構及學術單位無不傾全力進行研究, 以期能達到永續發展(sustainable development)的目的。
    為了達到減少溫室氣體 (Greenhouse Gases, GHGs)排放量的目標, 有三個主要的對策: 1). 減少需求端的能源使用量; 2).提升能源使用效率; 3). 降低對會產生大量GHG的石化燃料(fossil fuels)的依賴。要減少需求端的需求, 需透過政府相關法令的宣導及政策的配合; 要提升能源使用效率, 則是產品生產廠商需透過不斷的技術創新來達成; 而要降低對會產生大量GHG的石化燃料的依賴, 則可藉由提高再生能源的使用比例來達成。
    本研究的主要目的, 是希望藉由研究全球各主要汽車廠在載客車輛(passenger vehicles)的技術創新及進程,來評估這個區塊未來對提升能源使用效率以降低GHG的可能貢獻; 以及藉由研究再生能源電力(renewable electricity)供應鏈的現狀及發展瓶頸, 提出未來的改善方向,以協助政府單位及產業界提高對大量使用再生能源的意願。
    在載客車輛的技術創新方面, 我們針對兩種不同的發展策略:提高引擎性能及使用非石化燃料提出優劣分析及比較, 同時針對它們的性能提升進行評估, 以證實這些技術創新對於減少GHG排放確實可行; 接著, 我們評估各國在推動載客車輛的GHG排放標準的差異及時程, 最後預估在2020年、2030年及2040年,藉由這些車輛的普及, 可能帶來的GHG減少的比例。
    在再生能源電力方面, 我們分析了各種再生能源技術的差異、成本、供應鏈的現狀及瓶頸, 同時提出改善建議。接著, 我們根據未來全球電力需求及各種再生能源電力的成長, 預估在2020年、2030年及2040年, 藉由再生能源電力的大量使用, 可能帶來的GHG減少的比例。
    本研究所推估出的節能減碳車輛以及再生能源電力所可能帶來的全球GHG排放量的減少比例(與2014年相比), 分別為2020年共可減少1.43%、2030年共可減少2.2%、2040年可減少3.09%。但如果還原載客車輛的成長率(每年5%以上)及電力的裝載容量的增加(每年3%以上), 則節能減碳車輛的普及和再生能源電力的使用, 可減少GHG排放量分別為8.43%(2020年)、24.4%(2030年)及46.59%(2040年)。從以上這些數值可以讓各國政府、研究機構及生產廠商有所啟發, 願意投入更大的資源和心力在支持及開發更廣泛的節能減碳技術(不限於載客車輛)以及快速提升再生能源電力的容量。


    Unsurprisingly, the world’s present development path is not sustainable. The impact of global warming and climate change on animal, plant and human civilization has become one of the most critical issues in the 21st century. The technological developments have advanced human civilization in the past two centuries. However, human civilization and technological developments have disastrous consequences for the future generations. The increase in disasters caused by typhoons, floods, landslides, earthquakes, and tsunamis reflect that humans are not in control of their destiny. The global warming issue is mainly caused by the increased emissions of greenhouse gases (GHGs) in the space. Reducing the GHG emissions has become an urgent and headache problem facing governments, research institutions, and industries worldwide.
    The sustainable development typically involves three major strategies: 1). energy savings on the demand side; 2). efficiency improvement in the energy consumption; and 3). replacement of high-GHG-emission fossil fuels by other low-GHG-emission alternative fuels (such as renewable energies). In this study, we applied two of the three sustainable development strategies, namely, efficiency improvement strategy and replacement strategy on two empirical studies to estimate the effect of reducing GHG emissions for achieving environmental sustainability.
    One of the main purposes of this study is to understand the state-of-the-art technical innovations of the passenger vehicles sector and to assess the energy efficiency in this regard in order to reduce global GHG emissions. The other purpose of this study is to assess the current development, performance, and barriers facing the renewable electricity supply chain, and to propose suggestions for future improvements.
    In the study of technical innovations of the passenger vehicles, we conducted a comparative analysis on two different development strategies: to improve the performance of conventional engines and to use alternative fuels. We then estimate the preferable reduction of global GHG emissions contributed by the population of fuel-efficient / low-carbon emission vehicles in 2020, 2030 and 2040.
    In the study of renewable electricity, we analyzed the differences between the various renewable energy technologies. We then estimate the preferable reduction of global GHG emissions contributed by the increased capacity of renewable electricity in 2020, 2030 and 2040.
    The study results in the estimation of reduction of global GHG emissions (compared with 2014 ) is 1.43% in 2020, 2.2% in 2030, and 3.09% in 2040, respectively. But if we added back the annual sales growth of passenger vehicles (more than 5%) and annual demand growth of electricity (more than 3%), the estimated contribution from the pervasive passenger vehicles and increased share of renewable electricity on the reduction of global GHG emissions will be 8.43% (2020), 24.4% (2030), and 46.59% (2040), respectively. we believe that these values will allow governments, research institutions and manufacturers to consider investing more resources and efforts in support of the development of a wider range of carbon reduction technologies and the increase of renewable electricity capacity.

    中文摘要 Abstract 誌謝 List of figures List of tables 1. Introduction 1.1 Background and motivation 1.2 Research questions 1.3 Research purposes 1.4 Structure of the dissertation 2. Literature review 2.1 Global warming 2.2 Sustainable development 2.3 Technical innovation on passenger vehicles 2.4 Renewable energies 3. Research framework 4. Study 1: Fuel-efficient and low-carbon passenger vehicles 4.1 Research framework of Study 1 4.2 The comparison of fuel-efficient vehicles and hybrid vehicles 4.3 Expanding the research to the global contect 4.4 Conclusion of Study 1 5. Study 2: Renewable energy supply chain management 5.1 Research framework of Study 2 5.2 Renewable energy supply chain 5.3 Performance of renewable energy supply chains 5.4 Barriers to renewable energy development 5.5 Improving the renewable energy supply chains 5.6 Scenario analysis of the global GHG emission reduction from RE electricity 5.7 Conclusion of Study 2 6. Conclusion and future research 6.1 Summary of the study 6.2 Implications 6.3 Limitations 6.4 Suggestions for future research References Appendices 授權書

    ADIREC (Abu Dhabi International Renewable Energy Conference). (2013). Declaration of the Abu Dhabi International Renewable Energy Conference, 17 January 2013. Available online: http://www.ren21.net/Portals/0/documents/ADIREC/ADIREC% 20Declaration%20--%20final%20--%2017%20Jan%202013.pdf (accessed 30 June, 2015).
    AEW (Auto Energy Website). (2015). Vehicle Energy Consumption Modelling and Analysis. Available online: https://auto.itri.org.tw/mode.htm (accessed on 27 June, 2015). (In Chinese)
    Akorede, M.F., Hizam, H., & Pouresmaeil, E. (2010). Distributed energy resources and benefits to the environment. Renewable and Sustainable Energy Review, 14(2), 724–734.
    Amponsah, N.Y., Troldborg, M., Kington, B., Aalders, I., & Hough, R.L. (2014). Greenhouse gas emissions from renewable energy sources: A review of lofecycle considerations. Renewable and Sustainable Energy Reviews 39, 461–475.
    Bañosa, R., Manzano-Agugliarob, F., Montoyab, F.G., Gila, C., Alcaydeb, A., & Gómezc, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable Sustainable Energy Review, 15(4), 1753–1766.
    Baran, P. (2010). On distributed communications. RAND Corporation. Available online: http://www.rand.org/pubs/research_memoranda/RM3420/RM3420.chapter1.html (accessed on 27 June, 2015).
    Chatzimouratidis, A. & Pilavachi, P.A. (2009). Technological, economic and sustainability evaluation of power plants using the Analytic Hierarchy Process, Energy Policy, 37(3), 778–787.
    CMC (China Motor Co., Ltd.). (2015). Mitsubishi innovative valve timing electronic control system. Available online: http://www.china-motor.com.tw/innovate/innovate_04_1.html (accessed on 27 June, 2015). (In Chinese)
    Costanza R., & Patten B. (1995). Defining and predicting sustainability. Ecological Economics, 15(3), 193–196.
    Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., & Totterdell, I.J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.
    Denholm, P., Ela, E., Kirby, B., & Milligan, M. (2010). Technical report: the role of energy storage with renewable electricity generation. National Renewable Energy Laboratory. Available online: http://www.nrel.gov/docs/fy10osti/47187.pdf (accessed on 27 June, 2015).
    Del Río, P., & Burguillo, M. (2008). Assessing the impact of renewable energy development on local sustainability: Towards a theoretical framework. Renewable and Sustainable Energy Review 12(5), 1325-1344.
    Dickson, M.H., & Fanelli, M. (2004). What is Geothermal Energy? Istituto di Geoscienze e Georisorse, CNR, Pisa, Italy. Available online: http://www.geothermal- energy.org/what_is_geothermal_energy.html (accessed on 27 June, 2015).
    Dovìa, V.G., Friedlerb, F., Huisinghc, D., & Klemešd, J.J. (2009). Cleaner energy for sustainable future. Journal of Cleaner Production, 17(10), 889–895.
    Duinker, P.N., & Greig, L.A. (2007). Scenario analysis in environmental impact assessment: Improving explorations of the future. Environmental Impact Assessment Review, 27, 206–219. Rubin, A., & Kaivo-oja, J. (1999). Towards a futures-oriented sociology. International Review of Sociology, 9(3), 349–371.
    EERE (Energy Efficiency and Renewable Energy). (2010). Geothermal technologies. Available online: http://www.eere.energy.gov/basics/renewable_energy/ geothermal.html (accessed on 27 June, 2015).
    EPA (Environmental Protection Administration Taiwan). Green car guidance. Available online: http://greencar.epa.gov.tw/greencar.aspx (accessed on 27 June, 2015). (In Chinese)
    ESA (Electricity Storage Association). (2009). Technology technologies. Available online: http://energystorage.org/energy-storage/energy-storage-technologies (accessed on 27 June, 2015).
    Espey, S. (2001). Renewables portfolio standard: a means for trade with electricity from renewable energy sources? Energy Policy, 29(7), 557-566.
    Evans, A., Strezov, V., & Evans, T.J. (2009). Assessment of sustainability indicators for renewable energy technologies. Renewable and Sustainable Energy Reviews, 13(5), 1082-1088.
    Faaij, A. (2006). Bio-energy in Europe: changing technology choices. Energy Policy, 34(3), 322-342.
    Farrell, J. (2007). Report on DOE’s energy efficiency and renewable energy biomass program. U.S. Department of Energy: Biological and Environmental Research Advisory Committee. Available online: http://www.science.doe.gov/ober/berac/Ferrell05-07.ppt (accessed on 27 June, 2015).
    Feroz, E.H., Raab, R.L., Ulleberg, G.T., & Alsharif, K. (2009). Global warming and environmental production efficiency ranking of the Kyoto Protocol nations. Journal of Environmental Management, 90, 1178–1183.
    Fischer T., & Henkel, J. (2012). Complements and Substitutes in Profiting from Innovation – A choice experimental approach. Research Policy, 42(2), 326-339.
    FLH (Ford Lio Ho). (2015). Ford Turbocharged EcoBoost Engine. Available online: http://www.ford.com.tw/techsection#fullscreen-overlay=cid=1249087333469 (accessed on 27 June, 2015). (In Chinese)
    Flynn, et al. (2004). Meeting the Energy Needs of Future Warriors. National Research Council of the Nation Academies. Available online: http://www.nap.edu/openbook.php?record_id=11065&page=R1 (accessed on 27 June, 2015).
    Foy, G.E. (1990). Economic Sustainability and the Preservation of Environmental Assets. Journal of Environmental Management, 14(8), 771-778.
    Frasera, E.D.G., Dougilla, A.J., Mabeeb, W.E., Reeda, M., & McAlpinec, P. (2006). Bottom up and top down: Analysis of participatory processes for sustainability indicator identification as a pathway to community empowerment and sustainable environmental management. Journal of Environmental Management, 78(2), 114–127.
    GEO (Geothermal Education Office). (2010). Hottest known geothermal regions. Available online: http://geothermal.marin.org/GEOpresentation/sld015.htm (accessed 27 June, 2015).
    Goodland, R. (1995). The concept of environmental sustainability. Annual Review of Ecology and Systematics, 26, 1–24.
    Gort, M., & Klepper, S. (1982). Time paths in the diffusion of product innovations. The Economic Journal, 92(367), 630–653.
    Hansen, J.E., & Houghton, J. (1998). Global Warming: The Complete Briefing, 3rd ed. Cambridge, UK: Cambridge University Press.
    Hansen, J.; Sato, M.; Ruedy, R., Lacis, A., & Oinas, V. (2000). Global warming in the twenty-first century: An alternative scenario. Proceedings of the National Academy of Sciences of the United States of America, 97(18), 9875-9880.
    Harabi, N. (1995). Appropriability of technical innovations: An empirical analysis, Research Policy, 24(6), 981–992.
    Hepbasli, A. (2008). A key review on exegetic analysis and assessment of renewable energy resources for a sustainable future. Renewable Sustainable Energy Review, 12, 593–661.
    HMCL (Hotai Motor Co., Ltd). Toyota Prius Hybrid Vehicle. Available online: http://www.toyota.com.tw/tech/ultimate_eco_car_parallax/Ultimate_Eco_Car (accessed on 27 June, 2015). (In Chinese)
    Honda (Honda Taiwan). Honda Variable Cylinder System (VCM). Available online: http://www.honda-taiwan.com.tw/auto/technology_VCM.html (accessed on 27 June, 2015). (In Chinese)
    Howes, R. et al. (2007). Challenges of electricity storage technologies. APS Panel on Public Affairs Committee on Energy and Environment, 2007. Available online: http://www.aps.org/policy/reports/popa-reports/upload/Energy-2007-Report-ElectricityStorageReport.pdf (accessed on 27 June, 2015).
    Hsiang, S.M., Burke, M., & Miguel, E. (2013). Quantifying the influence of climate on human conflict. Science, 341, 1212–1226.
    ICCT. (2015). Improving the conversions between the various passenger vehicle fuel economy/CO2 emission standards around the world. The international council on clean transportation (ICCT), Available online: http://www.theicct.org/blogs/staff/improving-conversions-between-passenger-vehicle-efficiency-standards (accessed on 30 June, 2015).
    Ilgin, M.A., & Gupta, S.M. (2010). Environmentally conscious manufacturing and product recovery (ECMPRO): A review of the state of the art. Journal of Environmental Management, 91(3), 563–591.
    IPCC (2011). Special report on renewable energy sources and climate change mitigation.
    Intergovernmental panel on climate change. Available online: https://www.ipcc.ch/pdf/ special-reports/srren/SRREN_FD_SPM_final.pdf (accessed on 30 June, 2015).
    ITRI (Industrial Technology Research Institute). The estimation results of fuel consumption and CO2 emission. The technical data of Industrial Technology Research Institute, Taiwan, 21 October 2014. (In Chinese).
    Jones, R.M., Naylor, B., & Towill, D.R. (2000). Engineering the leagile supply chain. International Journal of Agile Management Systems, 2(1), 54-61.
    Korea Smart Grid Institute. (2009). Korea’s smart grid roadmap 2030. Available online: http://www.smartgrid.or.kr/10eng4-3.php (accessed on 27 June, 2015).
    Kubik, M. (2009). Renewable energy data book. U.S. Department of Energy: Energy Efficiency and Renewable Energy. Available online: http://www1.eere.energy.gov /maps_data/pdfs/eere_databook.pdf (accessed on 27 June, 2015).
    Lallanilla, M. (2015). What is the Greenhouse Effect? Live Science. Available online: http://www.livescience.com/37743-greenhouse-effect.html (accessed on 27 June, 2015).
    Lamb, H.H. (2002). Climate, history and the modern world, 2nd ed. London, UK: Routledge.
    Li, X. (2005). Diversification and localization of energy systems for sustainable development and energy security. Energy Policy, 33(17), 2237-2243.
    Loucopoulos, P., & Karakostas, V. (1995). System Requirements Engineering, London: McGraw-Hill.
    Lund, H. (2007). Renewable energy strategies for sustainable development. Energy, 32(6), 912–919.
    Martin, N.J., & Rice, J.L. (2012). Developing renewable energy supply in Queensland, Australia: A study of the barriers, targets, policies and actions. Renewable Energy, 44, 119–127.
    McKenzie, S. (2004). Social Sustainability: Towards Some Definitions. Hawke Research Institute University of South Australia. Available online: http://www.unisa.edu.au/Documents/EASS/HRI/working-papers/wp27.pdf (accessed on 27 June, 2015).
    Menz, F.C., & Vachon, SS. (2006). The effectiveness of different policy regimes for promoting wind power: Experiences from the states. Energy Policy, 34(14), 1786-1796.
    Morelli, J., Greenwood, L., Lockwood, K, & Portillo, C. (2010). Sustainable Consumption and Production in Business: Where Should Responsibility Reside? Sixth Environmental Management Leadership Symposium: From Environmental to Sustainability Management. 22 March 2010, Leuphana University, Lüneburg, Germany.
    Morelli, J. (2011). Environmental Sustainability: A definition for environmental professionals. Journal of Environmental Sustainability, 1(1), Article 2. Available online: http://scholarworks.rit.edu/jes/vol1/iss1/2 (accessed on 27 June, 2015).
    Meteorological Reactors (2010). Solar energy generation flow. Homepage of Solar Chimneys website, Meteorological Reactors. Available online: http://www.solar-tower.org.uk/ (accessed on 27 June, 2015).
    Munashinge, M., & Shearer, W. (1995). Defining and measuring sustainability: The biogeophysical foundations. The United Nations University and the World Bank. Available online: http://www-wds.worldbank.org/servlet/WDSContentServer/WDSP/ IB/1995/01/01/000009265_3961219103404/Rendered/PDF/multi0page.pdf (accessed on 27 June, 2015).
    Naish, C. (2008). Outlook of energy storage technologies. European Parliament: Policy Department Economy and Science, 2008.
    NEMA (National Electrical Manufacturers Association). (2007). Smart Grid & cybersecurity. Available online: http://www.nema.org/gov/energy/smartgrid/ (accessed on 27 June, 2015).
    NRDC (Natural Resources Defense Counci). Renewable energy for America: Geothermal energy. Available online: http://www.nrdc.org/energy/renewables/ geothermal.asp (accessed on 27 June, 2015).
    NREL (National Renewable Energy Laboratory). Energy technology cost and performance data, 2010. Available online: http://www.nrel.gov/analysis/ tech_costs.html (accessed on 27 June, 2015).
    Nidumolu R., Prahalad C.K., & Rangaswami, M.R. (2009). Why sustainability is now the key driver of innovation. Harvard Business Review, September 2009, 57-64.
    OICA (2015). World motor vehicles sales 2005-2014. Available online: www.oica.net/category/sales-statistics/ (accessed on 30 June, 2015).
    Pearl, R.H. (1976). Hydrological problems associated with developing geothermal energy systems. Ground water, 14(3), 128-137.
    Porter, M.E. (1985). Competitive Advantage. New York: Free Press.
    Ragin, C.C. (1987). The comparative method: Moving beyond qualitative and quantitative strategies. Berkeley, CA, USA: University of California Press.
    REN21 (Renewable energy Policy Network for the 21th Century). (2014). 10 years of renewable energy progress. REN21 Secretariat, Paris. Available online: http://www.ren21.net/Portals/0/documents/activities/Topical%20Reports/REN21_10yr.pdf (accessed 30 June, 2015).
    REN21 (Renewable energy Policy Network for the 21th Century). (2015). Renewables 2015 Global status report. REN21 Secretariat, Paris. Available online: http://www.ren21.net/wp-content/uploads/2015/06/REN12-GSR2015_Onlinebook_low1.pdf (accessed 30 June, 2015).
    Robinson, J.B., & Herbert, D. (1999). Integrating climate change and sustainable development. In Proceedings of the IPCC Expert Meeting, Colombo, Sri Lanka, 27–29 April 1999; pp. 143–162.
    Robinson, J. (2004). Squaring the circle? Some thoughts on the idea of sustainable development. Ecological Economics, 48 (4), 369-384.
    Scarr, D., Kollek, R., & Collier, D. (2001). Wave energy: technology transfer and generic R & D recommendations. Arup Energy Ove Arup & Partners International. Available online: http://www.marinerenewables.ca/wp-content/uploads/2012/11/Wave
    -Energy-Technology-Transfer-and-Generic-RD-Recommendations-Guidelines-on-design-and-operation-of-wave-energy-converters.pdf (accessed on 27 June, 2015).
    Schalteggera, S., & Synnestvedtb, T. (2002). The link between ‘green’ and economic success: Environmental management as the crucial trigger between environmental and economic performance. Journal of Environmental Management, 65(4), 339–346.
    Schmeer, K. (2010). Stakeholder analysis guidelines. EESTUM Management. Available online: http://www.eestum.eu/voorbeelden/Stakeholders_analysis_guidelines.pdf (accessed on 27 June, 2015).
    Sclar, D. (2014). What are hybrid vehicles? Auto repair for dummies, 2nd ed. Hoboken, NJ, USA: John Wiley & Sons, Inc.
    Shah, A., Lennström, D., Sturesson, P., & Easterling, W. (2014). NVH integration of twin charger direct injected gasoline engine. SAE International Journal of Passenger Cars - Mechanical Systems, 7(3), 1221–1228.
    Shen, Y.C., Lin, G.T.R., Li, K.P., & Yuan, B.J.C. (2010). An assessment of exploiting renewable energy sources with concerns of policy and technology. Energy Policy, 38(8), 4604-4616.
    Schumpeter, J.A. (1934). The Theory of Economic Development, 8th printing, 1968. Cambridge, MA, USA: Harvard University Press.
    Siemons, R. et al. (2004). Bioenergy’s role in the EU energy market: A view of developments until 2020. BTG biomass technology group BV. Available online: https://np-net.pbworks.com/f/BTG+(2004)+Bioenergy%5C's+role+in+the+EU+2000-2020.pdf (accessed on 27 June, 2015).
    Smit, B. & Pilifosova, O. (2001). Adaptation to climate change in the context of sustainable development and equity. In Climate Change 2001: Impacts, Adaptation and Vulnerability; McCarthy, J.J., Canziani, O., Leary, N.A., Dokken, D.J., White, K.S. Eds.; IPCC Working Group II. Cambridge University Press Available online: https://www.ipcc.ch/ipccreports/tar/wg2/pdf/wg2TARchap18.pdf (acceses on 27 June, 2015).
    The Auto Channel. (2009). Toyota and Lexus hybrids top one million sales in the U.S. Available online: http://www.theautochannel.com/news/2009/03/11/453029.html (accessed on 27 June, 2015).
    TMC (Toyota Motor Corporation). (2010). Worldwide Prius sales top 3 millions. Available online: http://newsroom.toyota.eu/print.do;jsessionid=A753569EFEA6BFD
    862CD0130EA70FFBE?&id=3515 (accessed on 27 June, 2015).
    TMC (Toyota Motor Corporation). (2011) Worldwide sales of Toyota hybrids top 6 million units. Available online: http://corporatenews.pressroom.toyota.com/releases/
    worldwide+toyota+hybrid+sales+top+6+million.htm (accesses on 3 May 2015).
    UCS (Union of Concerned Scientists). (2002). Barriers to renewable energy technologies. Available online: http://www.ucsusa.org/clean_energy/smart-energy-
    solutions/increase- renewables/barriers-to-renewable-energy.html#.VY-imhuqpBc
    (accessed on 27 June, 2015).
    UCS (Union of Concerned Scientists). (2010). How hydroelectric energy works. Available online: http://www.ucsusa.org/clean_energy/our-energy-choices/renewable-
    energy/how-hydroelectric-energy.html#.VY-jaxuqpBc (accessed on 27 June, 2015).
    UCS (Union of Concerned Scientists). (2015). Climate hot map of global warming effects around the world. Available online: http://www.climatehotmap.org (accessed on 27 June, 2015).
    UN (United Nations). Kyoto protocol to the United Nations framework convention on climate change. Available online: http://unfccc.int/essential_background/kyoto_
    protocol/items/1678.php (accessed on 27, June 2015).
    University of Strathclyde. (2001). Renewables in Scotland. University of Strathclyde. Available online: http://www.esru.strath.ac.uk/EandE/Web_sites/01-02/RE_info/
    index.htm (accessed on 27 June, 2015).
    UNDP (United Nations Development Programme). (2010). Productive uses of renewable energy: energy supply chain. Available online: http://www.undp.org/gef/pure/05/05_1/05_1_2.htm (accessed on 27 June, 2015).
    U.S. DOE. (U. S. Department of Environment). (2010). 2009 Renewable energy data book. Available online: http://www1.eere.energy.gov/maps_data/pdfs/eere_databook.pdf (accessed 27 June, 2015).
    U.S. DOE. (U. S. Department of Environment) (2013). EPA’s top 10 conventionally-fueled vehicles for model year 2013. Available online: http://energy.gov/eere/vehicles/fact-765-february-4-2013-epas-top-10-conventionally-fueled-vehicles-model-year-2013 (accessed on 27 June, 2015).
    U.S. DOE. (U. S. Department of Environment) (2014). Transportation energy data book, 2012. Available online: http://cta.ornl.gov/data/chapter2.shtml (accessed on 27 June, 2015).
    U.S. EPA. (U.S. Environmental Protection Agency). (2015a). U.S. transportation sector greenhouse gas emissions,1990-2012. U.S. EPA:
    U.S. EPA. (U.S. Environmental Protection Agency). (2015b). Global greenhouse gas emissions data. U.S. EPA: Available online: http://www.epa.gov/climatechange/ghgemissions/global.html.
    Vitousek, P.M. (1994). Beyond global warming: Ecology and global change. Ecology, 75(7), 1861–1876.
    Vos, R.O. (2007). Defining sustainability: A conceptual orientation. Journal of Chemical Technology and Biotechnology, 82(4), 334–339.
    Wang, X.M., He, H.W., Sun, F.C., & Zhang, J.L. (2015). Application study on the dynamic programming algorithm for energy management of plug-in hybrid electric vehicles. Energies, 8(4), 3225–3244.
    Wee, H.M., Yang, W.H., Chou, C.W., & Padilan, M.V. (2012). Renewable energy supply chains, performance, application barriers and strategies for further development. Renewable Sustainable Energy Review, 16(8), 5451–5465.
    WWEA (World Wind Energy Association). (2006). Wind energy-technology and planning. Available online: http://www.wwindea.org/technology/ch01/estructura-en.htm (accessed on 27 June, 2015).
    WYLD Group. (2010). High temperature solar thermal technology roadmap. Available online: https://www.coag.gov.au/sites/default/files/HTSolar_thermal_roadmap.pdf (accessed on 27 June, 2015).
    Yilanci, A., Dincer, I., & Ozturk, H.K. (2009). A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications. Progress in Energy and Combustion Science, 35(3), 231-244.
    YMCL (Yulon Motors Co. Ltd.). (2015). Active Fuel Management (AFM). Available on line: http://www.yulon-motor.com.tw/car/tech_detail.asp?CTID={8A63B62F-1008-4225-98E7-5D048322263A} (accessed on 27 June, 2015). (In Chinese) (accessed on 30 June, 2015).

    QR CODE