簡易檢索 / 詳目顯示

研究生: 沈翌新
Yi-Xin Shen
論文名稱: 陽極氧化鋁輔助真空鑄造之銻化銦奈米線及其應用於有機場效電晶體型記憶體之特性研究
Indium Antimonide Nanowires Fabricated by Vacuum Injection Molding Process with AAO Template and the Application in OFET Memory
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 王秋燕
Chiu-Yen Wang
陳建仲
Chung-Chien Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 69
中文關鍵詞: 銻化銦陽極氧化鋁真空液壓鑄造奈米線有機場效電晶體型記憶體
外文關鍵詞: InSb, InSb nanowire, AAO, vacuum molding injection process, OFETs memory
相關次數: 點閱:261下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是將銻化銦塊材利用陽極氧化鋁模板(AAO)輔助真空液壓鑄造法製作一維結構奈米線,獲得奈米線與共聚物混和,應用於製備成有機場效電晶體(OFET)記憶體電荷儲存層。主要探討二個方向:(1)銻化銦塊材利用不同陽極氧化鋁奈米孔徑(80、100及400 nm)製得奈米線,藉由掃描式電子顯微鏡觀察表面型態,並透過X光繞射儀及能量色散X射線光譜儀分析成分比例及相組成;(2)以80 nm奈米線為主,改變不同添加量(0 mg、2 mg、5 mg及9 mg),並由半導體參數分析儀進行捕獲電荷能力檢測及比較。
結果顯示:銻化銦塊材經由SEM觀察表面,呈現二個相共存;進一步利用XRD分析結果顯示在塊材存在Sb (012)及(110)結晶平面,確定塊材為Sb/InSb兩相共存結構;以陽極氧化鋁模板輔助真空液壓鑄造銻化銦米線,以EDS分析結果顯示孔徑80 nm和100 nm之In:Sb原子百分比分別為41.51:59.91及47.71:52.29,Sb成分相較In成分多,進一步利用XRD分析結果顯示二者都存在Sb (012)結晶平面,確認有Sb/InSb兩相共存,分析結果與塊材相同,準確塊材成分複製於奈米線中;取不同重量之80 nm奈米線添加至記憶元件中,經半導體參數分析儀結果顯示,添加2毫克奈米線之元件具有最大的臨限電壓偏移量(ΔVth)為25 V以及最大的開關電流比為105;而添加9毫克之元件其ΔVth=6 V以及開關電流比為105,主要是因為合金奈米線濃度過高會導致電荷容易流失,使記憶效應不佳。


In the article, indium antimonide nanowires(NWs) were fabricated by vacuum molding injection process with anodized aluminum oxide (AAO) template, and the obtained NWs were mixed with PMAA to prepare an organic field-effect transistor (OFETs) memory. The two main part: (1) The influences of pore size of AAO (80 nm, 100 nm and 400 nm) on the morphology and composition ratio of InSb NWs. (2) The added amount of 80 nm InSb NWs (0 mg, 2 mg, 5 mg and 9 mg) affects the trapping charge ability of OFETs memory. InSb NWs surface morphology was observed by scanning electron microscope. InSb bulk and NWs composition was carried out by energy dispersive analysis and X-ray diffraction. The memory effect was tested by Parameter analyzer mainframe system to estimate their performance.
According to XRD and SEM results, InSb and pure Sb phases coexist in InSb bulk material, same as the prediction in phase diagram because Sb phase is indeed produced because it shows Sb (012) and (110) crystal plane. In InSb NWs EDS analysis, The chemical composition ratios of 80 and 100 nm NWs show 41.51: 59.91 and 47.71: 52.29, respectively. In addition, XRD result indicated the existence of (012), suggesting the successfully duplication of bulk material to nanoscale. The results of charge trapping characteristic show the component with 2 mg InSb NWs has the largest threshold voltage shift (ΔVth=25 V) and on/off ratio is 105. The component added 9 mg InSb NWs has minimum ΔVth = 6 V and the on/off ratio is 105.The main reason is that high concentration of the alloy NWs causes poor memory effect.

摘要 II ABSTRACT III 目 錄 IV 圖目錄 VI 表目錄 VIII 第1章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 2 第2章 基礎理論與文獻回顧 4 2.1 銻化銦基本性質 4 2.2 奈米線製作方式 6 2.2.1 奈米線生長方式 6 2.2.2 真空液壓成型法 6 2.3 陽極氧化鋁 8 2.3.1 陽極氧化鋁發展 8 2.3.2 鋁材電解拋光 10 2.3.3 陽極氧化鋁生長機制 11 2.3.4 陽極處理參數 12 2.4 有機場效電晶體 14 2.4.1 有機場效電晶體型記憶體結構 14 2.4.2 有機場效電晶體記憶體記憶原理 15 第3章 實驗方法 17 3.1 實驗流程 17 3.2 實驗儀器與參數 26 3.3 材料特性分析 30 3.3.1 場發式掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 30 3.3.2 能量色散X射線光譜儀(Energy Dispersive Analysis, EDS) 30 3.3.3 X光繞射儀(XRD) 30 3.3.4 半導體參數分析儀系統 31 第4章 結果與討論 32 4.1 銻化銦塊材製備 32 4.2 陽極氧化鋁模板製程 36 4.2.1 第一次陽極處理表面形貌 36 4.2.2 第二次陽極處理表面形貌 39 4.3 銻化銦奈米線製備 43 4.4 記憶元件製備與分析 52 第5章 結論與未來展望 57 參考資料 58

[1] P. Pavan, R. Bez, P. Olivo, E. Zanoni, Proceedings of the IEEE, 1997, 85, 1248.
[2] S. Möller, C. Perlov, W. Jackson, C. Taussig, S. R. Forrest, Nature 2003, 426 , 166.
[3] Q. D. Ling, D. J. Liaw, C. Zhu, D. S. H. Chan, E. T Kang, K. G. Neoh, Prog. Polym. Sci. 2008, 33, 917.
[4] J. Ouyang, C.-W. Chu, C. R. Szmanda, L. Ma, Y. Yang, Nat. Mater. 2004, 3, 918.
[5] P. Heremans, G. H. Gelinck , R. M. Muller, K. J. Baeg, D. Y. Kim, Y. Y. Noh, Chem. Mater. 2011, 23, 341.
[6] C. L. Liu, W. C. Chen, Polym. Chem. 2011, 2, 2169.
[7] N. G. Kang, B. Cho, B. G. Kang, S. Song, T. Lee, J. S. Lee, Adv. Mater. 2012, 24, 385.
[8] R. C. G. Naber, K. Asadi, P. W. M. Blom, D. M. de Leeuw, B. de Boer, Adv. Mater. 2010, 22, 933.
[9] W. P. Lin, S. J. Liu, T. Gong, Q. Zhao, W. Huang, Adv. Mater. 2013, DOI: 10.1002/adma.201302637.
[10] R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, D. M. D. Leeuw, Nat. Mater. 2005, 4, 243.
[11] K.-J. Baeg, Y.-Y. Noh, J. Ghim, S.-J. Kang, H. Lee, D.-Y. Kim, Adv. Mater. 2006, 18, 3179.
[12] C. A. Di, F. Zhang, D. Zhu, Adv. Mater. 2013, 25, 313.
[13] S.-T. Han, Y. Zhou, Z.-X. Xu, L.-B. Huang, X.-B. Yang, V. A. L. Roy, Adv. Mater. 2012, 24, 3556.
[14] S. J. Kim, J. S. Lee, Nano Lett. 2010, 10, 2884.
[15] Y. Guo, C. A. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu, Y. Liu, Adv. Mater. 2009, 21, 1954.
[16] T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, T. Someya, Science 2009, 326, 1516.
[17] R. Schroeder, L. A. Majewski, M. Grell, Adv. Mater. 2004, 16, 633.
[18] K.-J. Baeg, Y.-Y. Noh, H. Sirringhaus, D.-Y. Kim, Adv. Funct. Mater. 2010, 20, 224.
[19] M. Kang, K.-J. Baeg, D. Khim, Y.-Y. Noh, D.-Y. Kim, Adv. Funct. Mater. 2013, 23, 3503.
[20] Q. Wei, Y. Lin, E. R. Anderson, A. L. Briseno, S. P. Gido, J. J. Watkins, ACS Nano 2012, 6, 1188.
[21] S.-T. Han, Y. Zhou, C. Wang, L. He, W. Zhang, V. A. L. Roy, Adv. Mater. 2013, 25, 872.
[22] K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim, D. Y. Kim, Adv. Funct. Mater. 2008, 18, 3678.
[23] J. C. Hsu, W. Y. Lee, H. C. Wu, K. Sugiyama, A. Hirao, W. C. Chen, J. Mater. Chem. 2012, 22, 5820.
[24] Y. H. Chou, N. H. You, T. Kurosawa, W. Y. Lee, T. Higashihara, M. Ueda, W. C. Chen, Macromolecules. 2012, 45, 6946.
[25] Y. C. Chiu, C. L. Liu, W. Y. Lee, Y. Chen, T. Kakuchi, W. C. Chen, NPG Asia Mater. 2013, 5, e35.
[26] W. Wu, H. Zhang, Y. Wang, S. Ye, Y. Guo, C. Di, G. Yu, D. Zhu, Y. Liu, Adv. Funct. Mater. 2008, 18, 2593.
[27] T.-D. Tsai, J.-W. Chang, T.-C. Wen, T.-F. Guo, Adv. Funct. Mater. 2013, 23, 4206.
[28] M. Burkhardt, A. Jedaa, M. Novak, A. Ebel, K. Voitchovsky, F. Stellacci, A. Hirsch, M. Halik, Adv. Mater. 2010, 22, 2525.
[29] Z. Z. Du, W. Li, W. Ai, Q. Tai, L. H. Xie, Y. Cao, J. Q. Liu, M. D. Yi, H. F. Ling, Z. H Li, W. Huang, RSC Adv. 2013, 3, 25788.
[30] Y. C. Chiu, T. Y. Chen, C. C. Chueh, H. Y. Chang, K. Sugiyama, Y. J. Sheng, A. Hirao, W. C. Chen, J. Mater. Chem. C 2014, 2, 1436.
[31] R.K. Paul , M. Penchev, J. Zhong, M. Ozkan, M. Ghazinejad, X. Jing , E. Yengel , C. S. Ozkana,, Material Chemistry and Physics. 2010, 121, 397
[32] Y. J. Jina, X. H. Tang, H.F. Liua, C.Keb, S.J. Wang, D.H. Zhang, Journal of Alloys and Compounds, 2017, 721, 628
[33] B.W. Jia, K.H. Tan, W.K. Loke, S.Wicsksono, S.F. Yoon, Applied Surface Science, 427 ,2018, 876.
[34] 陳仕鴻、李其駿、鄭秋平,奈米通訊. 2018, 242, 37
[35] D.L. Rode, Phys. Rev. B: Solid State. 1971, 3, 3287.
[36] M. Heyns and W. Tsai, MRS Bull. 2009, 34, 485.
[37] 蘇俊榮,奈米通訊, 2015, 224,18
[38] F. L. Yang et al., Tech. Dig. VLSI Technol., 2004, 196,
[39] H. C. Lin, et al, IEEE Electron Device Lett. 2003, 24, 102
[40] M. D. Austin et al, Appl. Plays, Lett. 2004, 84, 2599
[41] Z. Zhibo and Y.Y. Jackie, J. Mater. Res. 1998, 13, 1745
[42] Z. Zhang, D. Gekhtman, Chem. Mater. 1996, 11, 1659.
[43] K. Hnida, Justyna Mechb, Grzegorz D. Sulka, Applied Surface Science. 2013, 287, 252
[44] A.P. Alivisatos, Science 1996, 271, 933.
[45] C.A. Huber, T.E. Huber, M. Sadoqi, J.A. Lubin, S. Manalis, C.B. Prater. Nanowire array composites. Science. 1994, 263, 800
[46] S Setoh, A Miyata - Sci. Pap. Inst. Phys. Chem. Res.(Jpn.), 1932
[47] 1984, .G.F. Vander Voort, “Metallography Principles and Practice “,
[48] O. Jessensky, F. Muller, U. Gosele,. Applied Physics Letters. 1998, 72, 1173.
[49] Y. Du, W.L. Cai, C.M. Mo, J. Chen, L.D. Zhang, X.G. Zhu, Applied Physics Letters. 1999, 74, 2951.
[50] G.E. Thompson, G.C. Wood. Porous anodic film formation on aluminium. 1981
[51] J.Y. Ying, Z. Zhang, L. Zhang, M.S. Dresselhaus. Process for fabricating an array of nanowires. Google Patents ,2001.
[52] A.E. Miller, S. Bandyopadhyay. Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays. Google Patents 1998
[53] H, Masuda, M, Nakao, T, Tamamura. Method of manufacturing porous anodized alumina film. Google Patents, 2000.
[54] H. Masuda, K. Fukuda. Science. 1995, 268, 1466.
[55] H. Masuda, M. Satoh, Japanese Journal of Applied Physics Letters. 1996, 35,126.
[56] A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele,. Journal of Applied Physics. 1998, 84,602.
[57] S. M. Sze, “Physics of Semiconductor Devices,” Wiley & Sons Inc., 1981.
[58] R. F. Pierret, “Semicoonductor Device Fundamentals,” Addison Wesley, 1996
[59] B.Kang-Jun, N.Yong-Young, S. Henning, K.Dong Yu, Controllable Shifts in Threshold Voltage of Top-Gate Polymer Field-Effect Transistors for Applications in Organic Nano Floating Gate Memory, Adv. Funct. Mater. 20, 2010, 224–230
[60] Q. Wei , Y. Lin , E. R. Anderson , A. L. Briseno , S. P. Gido , J. J. Watkins, ACS Nano 2012 , 6 , 1188 .
[61] K.-J. Baeg , Y.-Y. Noh , H. Sirringhaus , D.-Y. Kim , Adv. Funct. Mater. 2010, 20, 224 .

QR CODE