簡易檢索 / 詳目顯示

研究生: 丁麒鈞
Chi-Chun Ting
論文名稱: PEG, PDMS / PPDI / PXG系列之聚氨酯彈性體的合成及其性質之研究
Study on Synthesis and Characterization of Polyurethane Elastomers Containing PEG, PDMS / PPDI / PXG
指導教授: 游進陽
Chin-Yang Yu
口試委員: 王丞浩
Chen-Hao Wang
施劭儒
Shao-Ju Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 60
中文關鍵詞: 聚氨酯聚乙二醇對苯二異氰酸酯對苯二甲醇預聚合法斷裂伸長率
外文關鍵詞: polyurethane, polyethylene glycol, para-phenylene diisocyanate, para-xylylene glycol, prepolymerization, elongation at break
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

聚氨酯彈性體具有良好的生物相容性和物理化學性能,機械性能,由異氰酸酯和多元醇製成,具有許多潛在的應用。儘管今天聚氨酯的應用很多,但我們仍然希望增加聚氨酯的應用範圍。所以選擇這個方法來研究其特性。
在此次研究中,我們以四氫呋喃為溶劑用聚乙二醇(PEG2000)/二甲基矽氧烷(PDMS4200)與對苯二異氰酸酯反應,以二月桂酸二丁基錫為催化劑生成預聚物,再與對苯二甲醇反應生成聚氨酯。分別以傅立葉紅外線光譜儀(FTIR)、高效能高分子色譜 (APC)、核磁共振光譜儀(1H-NMR)、熱重分析(TGA)、熱差分析(DSC) 以和拉伸試驗等來判斷聚氨酯結構與特性測定。
合成的熱塑性聚氨酯斷裂伸長率為約2500%是相當高的。在未來的發展中可以將其視為減震器或抗變形材料。


Polyurethane elastomers which are made of isocyanate and polyol exhibit good biocompatibility, physical and chemical properties and mechanical properties which leads to numerous potential applications. Despite of a variety of applications of polyurethane today, the scope of application of polyurethanes has still continually increased.
In this study, polyethylene glycol (PEG2000) with the molecular weights of around 2000 g/mol as the soft segment and para-phenylene diisocyanate, para-xylylene glycol as the hard segments were used to synthesize the polyurethanes (PUs) by prepolymerization process. Molecular weights of polymers were controlled by varying the concentration of diisocyanate to polyol and DBTDL was used as catalyst for precise control over molecular weight. Anhydrous tetrahydrofuran was used as a non-reactive solvent. In addition, one-step synthesis of pre-polymerized PU were also prepared in order to compare to that of polymers generated by prepolymerization process. PUs prepared by different methods were characterized by advanced polymer chromatography, 1H NMR spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry and tensile test.
The developed synthesis resulted in the formation of thermoplastic polyurethane with an elongation at break of about 2500%, which is considerably high. This polymer can be considered for using in a shock absorber or anti-deformation material in the near future.

口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Characteristics of PUs 3 1.2 Classification of PUs 3 1.2.1 Condensation polymerization 4 1.2.2 Addition polymerization 4 1.2.3 Step- growth Polymerization 4 1.2.4 Chain-growth polymerization 5 1.2.5 Thermoplastic materials 5 1.2.6 Thermosetting materials 6 1.2.7 Polyester type PUs 6 1.2.8 Polyether type PUs 6 1.3 Research motivations 6 Chapter 2 Previous studies 8 2.1 Reaction route of one step polymerization 8 2.2 Structural characterization of polyurethanes 9 2.3 Ideal reaction temperature and dropping test 10 2.4 Ideal reaction procedure test 17 2.5 Ideal initial concentration test 22 2.6 Ideal reaction time test 30 2.7 PEG, PPDI and PDMS reaction test 33 Chapter 3 Experimental 39 3.1 Materials 39 3.2 Analytical methods 39 3.3 Polyurethane synthesis 43 3.3.1 Reaction route of Prepolymerization 43 3.3.2 Synthesis of PEG-PPDI Polyurethanes 44 3.3.3 Synthesis of PEG-PPDI-PDMS Polyurethanes 44 3.3.4 Synthesis of PEG-PPDI-PXG Polyurethanes 45 3.4 Preparation of polymer film 46 3.5 Polyurethane analysis 46 3.5.1 Hydrogen Nuclear Magnetic Resonance Spectroscopy (1H NMR) 46 3.5.2 Fourier Transform Infrared Spectrometer(FTIR) 48 3.5.3 Advanced Polymer Chromatography (APC) 49 3.5.4 Thermogravimetric Analysis (TGA) 50 3.5.5 Differential Scanning Calorimetry(DSC) 51 3.5.6 Tensile Test 52 Chapter 4 Conclusions 58 REFERENCE 59  

1 Bayer, O., Bayer, F. & Rhein, L. Das Di-lsocganat-Poluadditionsverfahren (Polyurethane). Angewandte Chemie, 1947, 59, 257-288.
2 Seymour, R. B. & Kauffman, G. B. Polyurethanes: A Class of Modern Versatile Materials. Journal of Chemical Education, 1992, 69, 909-910.
3 Delebecq, E., Pascault, J. P., Boutevin, B. & Ganachaud, F. On the Versatility of Urethane/Urea Bonds: Reversibility, Blocked Isocyanate, and Non-isocyanate Polyurethane. Chem. Rev., 2013, 113, 80-118.
4 Felton, M. J. Oil products, from feedstocks to plastics, created the modern world. Petroleum and Downstream Products, 11-15.
5 Bernstein, B. Report of the Investigation of I. G. Farbenindustrie A. G. Division of Investigation of Cartels and External Assets Office of Military Government, U. S. (Germany), 1945.
6 Verdon, R. Lyme Disease and the Ss Elbrus:collaboration between the nazis and communists in chemical and biological warfare. Elderberry Press, 2012.
7 Busch, R., Steinborn, K., Skorpenske, R., Andrea, F. D. & Quintas, F. Pu Latin America 2001: August 28th-30th 2001: Polyurethane Flexible Foam: Continuous Innovation as Key to Success. iSmithers Rapra Publishing, 2001, 28-30 Paper 6, 1-7.
8 吴坤, 朱阳春, 李毕忠, 李泽国 & 路明洁. Polyurethane synthetic leather capable of inhibiting bacteria and resisting mildew and preparation method thereof (2012).
9 Sharmin, E. & Zafar, F. Polyurethane: An Introduction InTech - Open Science Open Minds, 2012.
10 Wallace, C. D. Legal Control of the Multinational Enterprise: National Regulatory Techniques and the Prospects for International Controls. Martinus Nijhoff Publishers The Hague/Boston/London, 1982.
11 周志. A new-type polyurethane raw material for chemical industry (2015).
12 Stone, E. In Fashion: Fun! Fame! Fortune! Fairchild, 2007, 106.
13 Schwarcz, J. Dr. Joe and what You Didn't Know. ECW Press, 2003, 86.
14 中国大百科全书出版社. 编辑部. 中国大百科全书: 政治学. 中国大百科全书出版社, , 2010, 23, 345.
15 Platzer, N. A. J. Addition and condensation polymerization processes : a symposium / Norbert A. J. Platzer, symposium chairman. Advances in chemistry series, 91, 1969.
16 Rogers, M. E. & Long, T. E. Synthetic Methods in Step-Growth Polymers. Wiley, 2003.
17 Ravve, A. Principles of Polymer Chemistry. 2013.
18 Fielding-Smith, D. GCSE Resistant Materials Technology for OCR. Pearson Education, 2003, 89.
19 Ramsden, E. N. A-Level Chemistry. Oxford University Press, 2000, 663.
20 Alvarez-Barragan, J., Dominguez-Malfavon, L., Vargas-Suarez, M., Gonzalez-Hernandez, R., Aguilar-Osorio, G. & Loza-Tavera, H. Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams. Appl. Environ. Microbiol., 2016, 82, 5225-5235.
21 Ismail, E. A. & Aziz, H. A. Polyurethane elastomers based on polyether and polyester polyols with better hydrolytic stability. J. Polym. Mater., 2000, 17, 439-444.
22 Li, Y. S., Li, M. S., Ma, C. C. M., Hsia, H. C. & Chen, D. S. Polyether and polyester polyol based glycidyl-terminated polyurethane modified epoxy resins: Mechanical properties and morphology. Polym. Int., 1994, 35, 371-378
23 Wang, C. C., Tsai G.W., Kuo B.C., Lin Z.L., Suen M.C. & Chen C.Y. Preparation and Characteristics of Degradable Polyurethane / Polylactic acid Foam Materials 2.
24 Dent, T. in Gulf Coast Conference ,Agilent Technologies, 2011
25 Whitesides, G. M. & Tang, S. K. Y. Fluidic Optics, SPIE, 2006, 6329 63290A, 2
26 A. Bennetta, P.J. Daivisa, R. Shanksb & Knottc, R. Concentration dependence of static and hydrodynamic screening lengths for three different polymers in a variety of solvents, Polymer, 2004, 45, 8531-8540

無法下載圖示 全文公開日期 2022/10/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE