簡易檢索 / 詳目顯示

研究生: 梁煥昌
Huan-Chang Luiang
論文名稱: 鋁塗層於氯化鈉/硫酸鈉熱腐蝕環境之固定荷重負載的劣化行為
Degradation of Commercial Aluminides in NaCl/Na2SO4 Hot Corrosion Environment under Static Loading
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 林招松
Chao-Sung Lin
李志偉
Jyh-Wei Lee
開物
Wu Kai
林原慶
Yuan-Ching Lin
鄭偉鈞
Wei-Chun CHeng
王朝正
Chaur-Jeng Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 222
中文關鍵詞: 鋁塗層熱腐蝕固定荷重劣化熱浸鍍鋁
外文關鍵詞: Commercial aluminides, Hot corrosion, Static loading, Degradation, Hot-dipping aluminum
相關次數: 點閱:357下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以低碳鋼為基材,以熱浸鍍為表面處理之方法。探討不同鋁塗層結構之鋼材於超超臨界鍋爐工作環境下 (燃燒溫度:700 ~ 760 °C 及蒸汽壓力:25 ~ 35 MPa),高溫擴散、高溫腐蝕、應力對其鍍層防護性及使用壽命之影響。分析表面鋁化處理之鋼材透過固定應力於高溫腐蝕的環境中,鋁塗層之失效機制及鋼材的高溫機械性質影響性。研究浸鍍厚度、鋁塗層結構在低外加應力下之高溫腐蝕的防護性影響評估。利用後熱處理製程及電鍍鎳製程,藉由調整介金屬成分及相分佈,控制鋁化層之厚度及平整度。進一步研究介金屬之厚度與平整度對鋁塗層高溫防護之影響。
  熱浸鍍鋁處理於鋼材生成連續的 FeAl 及 FeAl2 相具有阻礙裂紋成長的作用,表面開口裂紋向下延伸觸碰到相介面,產生遲滯現象而減緩裂紋成長速率。隨著試驗時間增加,外部鋁塗層中的 Fe2Al5 相受到熱腐蝕及局部張應力作用變為多孔、碎裂的組織,但內部鋁塗層中的 FeAl 及 FeAl2 相仍具有耐高溫腐蝕及抑制裂紋成長的效能。經過短時間的高溫擴散處理,FeAl相的厚度逐漸提升,Kirkendall孔洞沿Fe2Al5相之舌片狀組織分布。相較於熱浸鍍鋁處理試片,48小時的高溫擴散處理試片之失效壽命具有較小的標準差。隨著擴散處理的時間增長,Kirkendall孔洞的密度大幅上升,造成開口裂紋沿鋁塗層內部的孔洞向下延伸,形成簡易路徑,提供混合熔鹽侵蝕FeAl相。透過高溫拉伸試驗結果,熱浸鍍鋁處理使低碳鋼基材金屬在高溫於外加作用力情況中,具有高溫腐蝕防護性。
  電鍍鎳緩衝層熱浸鍍鋁處理於鋼材生成層狀組織,鍍鎳緩衝層阻礙鐵原子向外擴散,使得鍍層的結構於試驗初期較為穩定。隨著試驗時間增加,外部鋁塗層中的NiAl相受到熱腐蝕逐漸減薄。受到Ni-Al交互擴散的影響,內部鋁塗層的層狀結構逐漸轉變為柱狀結構。混合熔鹽沿柱狀結構間的裂紋向內侵蝕,使基材 / 鍍鎳層介面的碳化物受到氧化並逸失。氧化鐵自內部向外成長,造成鋁塗層失效。
  為提升低碳鋼基材於熱腐蝕環境中的外加作用力承載防護性,本研究分別以熱浸鍍鋁處理、熱浸鍍後高溫擴散熱處理以及電鍍鎳緩衝層後熱浸鍍鋁3種方法,調整鋁塗層的顯微結構。實驗結果顯示,熱浸鍍鋁之鋁塗層仍具有較良好的抑制裂紋成長能力、斷力前伸長率,以及抗熱腐蝕能力。藉由擴散層的波浪狀相介面,鋁塗層提升裂紋尖端偏轉效應,耐熱腐蝕降低開口裂紋成長速率。


The low carbon steels (LCS) were aluminized by hot dipping. The effect of diffusion, hot corrosion, constant loading applied on the corrosion resistance of aluminides and the failure model of aluminized steel was fully studied in advanced ultra-supercritical combusting system with a working temperature in a range of 700 to 760 °C, the steam pressure in a range of 25 to 35 MPa. The effect of the difference between microstructure, phase distribution on aluminized structure, and the abilities of hot corrosion resistance were also discussed. In addition, the failure model of aluminides and the mechanical properties of steel at high temperature under low stress applied was investigated. The hot corrosion resistance of aluminide affected by phase distribution, porosity, uniformity at the aluminide/substrate interface was also discussed.
The continuity of the Fe-rich phase, FeAl, retards the crack propagation from the surface. Although the outer aluminide, Fe2Al5, becomes porous and fragment-shaped, both FeAl and FeAl2 served as the protective barriers. After short-term diffusion treatment (DT), the thickness of the FeAl increases while the Kirkendall void forms at the FeAl2/ Fe2Al5 interface. A 48-hour DTs shows a reliable lifetime before rupture, which is relatively higher than that of the hot dipped aluminum (HDA) samples. However, the density of the Kirkendall void dramatically rises due to the long-term DT, and the cracks take the voids as the easy-path, which weaken the barrier effect of FeAl. The high-temperature tensile testing, furthermore, indicates the strength of HDA sample and guarantees the corrosion resistance of iron aluminide on LCS under the external force applied. The results illustrate the failure mode of the HDA sample whether DT is carried out or not, and show the performance of iron aluminide under loading in hot corrosion environment induced by the salt mixture.
The failure mechanism of hot-dip aluminized low carbon steel with nickel interlayer was carried out in hot corrosion induced by salt mixture under static load at 750 °C. The Ni-HDA showed great ability to sustain the hot corrosion accompanied with creep effect at the initial stage. The topcoat aluminum layer became porous due to the hot corrosion and ended up with its thickness reduction. Once the Ni/Al inter-metallic microstructure changed from lamellar to columnar structure, both corrosion resistance and coating continuity rapidly decreased. The consequences of coating failure were the easy-path generated for salt mixture and the coalesce of replacement of oxide to carbide. The effect of nickel interlayer on HDA extended the elongation and rupture time. It gratefully enhanced the performance of aluminide under static load at hot corrosion environment.
In order to improve the hot corrosion resistance under the static loading of LCS, this study conducted three kinds of surface modification: hot dipping aluminum (HDA), HDA with post diffusion treatment, and HDA with pre-plating nickel interlayer. These treatments aimed to change the microstructure and constitution of aluminides. The results show that the HDA has a relatively better resistance of crack propagation, total elongation before rupture, and anti-hot-corrosion capability. The wavy interface of intermetallic phases plays an essential role in the feature of crack deflection, while the hot corrosion resistance contributes to lower the growth rate of opening crack.

摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XXV 第一章 前言 1 第二章 文獻回顧 4 2.1 耐高溫保護層受應力作用之破裂機制 4 2.1.1 脆性耐高溫保護層 4 2.1.2 延性/脆性混合結構耐高溫保護層 15 2.2 熱浸鍍鋁 22 2.2.1 鐵鋁介金屬之形成機制 22 2.2.2 鋁塗層相變化與分布 26 2.2.3 鐵鋁介金屬之機械性質 31 2.3 電鍍鎳緩衝層 38 2.3.1 後熱浸鍍鋁處理 38 2.3.2 鎳鋁介金屬之機械性質 44 2.4 混合鹽熱腐蝕 48 第三章 實驗方法 53 3.1 研究材料製備 55 3.1.1 拉伸試片 55 3.1.2 熱浸鍍鋁 (hot dipping aluminum,HDA) 56 3.1.3 高溫擴散後熱處理 (diffusion treatment,HD-DT) 59 3.1.4 電鍍鎳緩衝層之熱浸鍍鋁 (nickel interlayer,Ni-HDA) 61 3.1.5 混合鹽沉積 (salt mixture deposited) 62 3.2 高溫拉伸試驗 (HIGH-TEMPERATURE TENSILE TESTING) 63 3.3 高溫固定荷重負載試驗 (STATIC LOAD TESTING) 65 3.4 分析設備 66 3.5 實驗方法 67 第四章 實驗結果 69 4.1 熱浸鍍鋁 (HDA) 在不同形變量狀態 69 4.1.1 表面破裂行為觀察 69 4.1.2 顯微結構觀察 87 4.2 高溫擴散 (DIFFUSION TREATMENT,HD-DT) 在不同形變量狀態 107 4.2.1 表面破裂行為觀察 107 4.2.2 顯微結構觀察 124 4.3 電鍍鎳緩衝層之熱浸鍍鋁 (NICKEL INTERLAYER,NI-HDA) 在不同形變量狀態 135 4.3.1 表面破裂行為觀察 135 4.3.2 顯微結構觀察 143 第五章 討論 157 5.1 形變量對熱浸鍍鋁塗層之劣化行為影響 157 5.1.1 裂紋成長狀態與殘留鋁塗層 157 5.1.2 HDA失效模型 160 5.2 鐵鋁介金屬層結構對鋁鍍塗層之劣化行為影響 163 5.2.1 裂紋成長狀態與殘留鋁塗層 163 5.2.2 HD-DT失效模型 167 5.3 電鍍鎳緩衝層對鋁塗層之劣化行為影響 173 5.3.1 裂紋成長狀態與殘留鋁塗層 173 5.3.2 Ni-HDA失效模型 175 第六章 結論 178 參考文獻 181

[1] Y. Fukuda. "Development of advanced ultra-supercritical fossil power plants in Japan: materials and high temperature corrosion properties." Materials Science Forum 696 (2011): 236-241.
[2] R. Viswanathan, K. Coleman, and U. Rao. "Materials for ultra-supercritical coal-fired power plant boilers." International Journal of Pressure Vessels and Piping 83 (2006): 778-783.
[3] P. S. Weitzel. "Steam generator for advanced ultra-supercritical power plants 700C to 760C." ASME 2011 power conference collocated with JSME ICOPE (2011): 281-291.
[4] S. Q. Zhao, X. S. Xie, G. D. Smith, and S. J. Patel. "Research and improvement on structure stability and corrosion resistance of nickel-base superalloy INCONEL alloy 740." Materials and Design 27 (2006): 1120-1127.
[5] P. Castello, V. Guttmann, N. Farr, and G. Smith. "Laboratory‐simulated fuel‐ash corrosion of superheater tubes in coal‐fired ultra‐supercritical‐boilers." Materials and Corrosion 51 (2000): 786-790.
[6] G. Stein-Brzozowska, D. M. Flórez, J. Maier, and G. Scheffknecht. "Nickel-base superalloys for ultra-supercritical coal-fired power plants: Fireside corrosion. Laboratory studies and power plant exposures." Fuel 108 (2013): 521-533.
[7] R. Viswanathan, R., J. Sarver, and J. M. Tanzosh. "Boiler materials for ultra-supercritical coal power plants—steamside oxidation." Journal of Materials Engineering and Performance 15 (2006): 255-274.
[8] S. S. Chatha, H. S. Sidhu, and B. S. Sidhu. "High temperature hot corrosion behavior of NiCr and Cr3C2–NiCr coatings on T91 boiler steel in an aggressive environment at 750 C." Surface and Coatings Technology 206 (2012): 3839-3850.
[9] F. Pettit. "Hot corrosion of metals and alloys." Oxidation of Metals 76, (2011): 1-21.
[10] J. A. Goebel, F. S. Pettit, and G. W. Goward. "Mechanisms for the hot corrosion of nickel-base alloys." Metallurgical Transactions 4 (1973): 261-278.
[11] S. Kamal, R. Jayaganthan, S. Prakash, and S. Kumar. "Hot corrosion behavior of detonation gun sprayed Cr3C2–NiCr coatings on Ni and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900 C." Journal of alloys and compounds 463 (2008): 358-372.
[12] C. J. Wang, J. W. Lee, and T. H. Twu. "Corrosion behaviors of low carbon steel, SUS310 and Fe–Mn–Al alloy with hot-dipped aluminum coatings in NaCl-induced hot corrosion." Surface and Coatings Technology 163 (2003): 37-43.
[13] H. J. Grabke. "Oxidation of NiAl and FeAl." Intermetallics 7 (1999): 1153-1158.
[14] C. H. Xu, W. Gao, and H. Gong. "Oxidation behavior of FeAl intermetallics. The effects of Y and/or Zr on isothermal oxidation kinetics." Intermetallics 8 (2000): 769-779.
[15] K. Natesan. "Corrosion performance of iron aluminides in mixed-oxidant environments." Materials Science and Engineering: A 258 (1998): 126-134.
[16] C. Leyens, B. A. Pint, and I. G. Wright. "Effect of composition on the oxidation and hot corrosion resistance of NiAl doped with precious metals." Surface and Coatings Technology 133 (2000): 15-22.
[17] M. W. Brumm and H. J. Grabke. "On the oxidation mechanism of alumina formers." Corrosion Science 33 (1992): 1677-1692.
[18] J. D. Kuenzly and D. L. Douglass. "The oxidation mechanism of Ni 3 Al containing yttrium." Oxidation of metals 8 (1974): 139-178.
[20] P. Huilgol, K. R. Udupa, and K. U. Bhat. "Microstructural investigations on the hot-dip aluminized AISI 321 stainless steel after diffusion treatment." Surface and Coatings Technology 375 (2019): 544-553.
[21] H. Glasbrenner, K. Stein-Fechner, and J. Konys. "Scale structure of aluminized Manet steel after HIP treatment." Journal of Nuclear Materials 283 (2000): 1302-1305.
[22] Y. Wang, S. G. Zhou, and K. S. Vecchio. "Annealing effects on the microstructure and properties of an Fe-based Metallic-Intermetallic Laminate (MIL) composite." Materials Science and Engineering: A 665 (2016): 47-58.
[23] H. Glasbrenner and O. Wedemeyer. "Comparison of hot dip aluminized F82H-mod. steel after different subsequent heat treatments." Journal of Nuclear Materials 257 (1998): 274-281.
[24] A. Bahadur. "Structural studies of hot dip aluminized coatings on mild steel." Materials Transactions 32 (1991): 1053-1061.
[25] H. E. Evans. "Cracking and spalling of protective oxide layers." Materials Science and Engineering: A 120 (1989): 139-146.
[26] D. C. Agrawal and R. Raj. "Measurement of the ultimate shear strength of a metal-ceramic interface." Acta Metallurgica 37 (1989): 1265-1270.
[27] B. Q. Yang, K. Zhang, G. N. Chen, G. X. Luo, and J. H. Xiao. "Measurement of fracture toughness and interfacial shear strength of hard and brittle Cr coating on ductile steel substrate." Surface Engineering 24 (2008): 332-336.
[28] C. A. Hippsley and J. H. DeVan. "A study of high temperature crack growth in nickel-aluminide." Acta Metallurgica 37 (1989): 1485-1496.
[29] B. F. Chen, J. Hwang, I. F. Chen, G. P. Yu, and J. H. Huang. "A tensile-film-cracking model for evaluating interfacial shear strength of elastic film on ductile substrate." Surface and Coatings Technology 126 (2000): 91-95.
[30] M. Yanaka, Y. Tsukahara, N. Nakaso, and N. Takeda. "Cracking phenomena of brittle films in nanostructure composites analyzed by a modified shear lag model with residual strain." Journal of Materials Science 33 (1998): 2111-2119.
[31] E. Tzimas and G. Papadimitriou. "Cracking mechanisms in high temperature hot-dip galvanized coatings." Surface and Coatings Technology 145 (2001): 176-185.
[32] J. Inagaki. "Effect of microstructure on fracture mechanisms in galvannealed coatings." ISIJ international 40 (2000): 172-181.
[33] Z. X. Gui, W. K. Liang and Y. S. Zhang. "Formability of aluminum-silicon coated boron steel in hot stamping process." Transactions of Nonferrous Metals Society of China 24 (2014): 1750-1757.
[34] K. Wang, Y. M. Jin, B. Zhu, and Y. S. Zhang. "Investigation on cracking characteristics of Al–Si coating on hot stamping boron steel parts based on surface strain analysis." Surface and Coatings Technology 309 (2017): 282-294.
[35] R. W. Richards, R. D. Jones, P. D. Clements, and H. Clarke. Richards, R. W., R. D. Jones, P. D. Clements, and H. Clarke. "Metallurgy of continuous hot dip aluminizing." International Materials Reviews 39 (1994): 191-212.
[36] U. Burkhardt, Y. Grin, M. Ellner, and K. Peters. "Structure refinement of the iron–aluminum phase with the approximate composition Fe2Al5." Acta Crystallographica Section B: Structural Science 50 (1994): 313-316.
[37] P. J. Black. "The structure of FeAl3. II." Acta Crystallographica 8 (1955): 175-182.
[38] B. Lemmens, H. Springer, M. J. Duarte, I. De Graeve, J. De Strycker, D. Raabe, and K. Verbeken. "Multi-method identification and characterization of the intermetallic surface layers of hot-dip Al-coated steel: FeAl3 or Fe4Al13 and Fe2Al5 or Fe2Al5+ x." Surface and Coatings Technology 324 (2017): 419-428.
[39] P. Hancock and J. R. Nicholls. "Application of fracture mechanics to failure of surface oxide scales." Materials Science and Technology 4 (1988): 398-406.
[40] J. K. Tien and J. M. Davidson. "Stress effects and the oxidation of metals." Metallurgical Society AIME (1974): 200.
[41] A. P. McGuigan, G. A. D. Briggs, V. M. Burlakov, M. Yanaka, and Y. Tsukahara. "An elastic–plastic shear lag model for fracture of layered coatings." Thin Solid Films 424 (2003): 219-223.
[42] H.E. Evans. "Spallation of oxide from stainless steel AGR nuclear fuel cladding: mechanisms and consequences." Materials Science and Technology 4 (1988): 414-420.
[43] C. J. Xie and W. Tong. "Cracking and decohesion of a thin Al2O3 film on a ductile Al–5% Mg substrate." Acta Materialia 53 (2005): 477-485.
[44] M. S. Hu and A. G. Evans. "The cracking and decohesion of thin films on ductile substrates." Acta Metallurgica 37 (1989): 917-925.
[45] D. J. Wu, W. G. Mao, Y. C. Zhou, and C. S. Lu. "Digital image correlation approach to cracking and decohesion in a brittle coating/ductile substrate system." Applied Surface Science 257 (2011): 6040-6043.
[46] L. Qian, S. J. Zhu, Y. Kagawa, and T. Kubo. "Tensile damage evolution behavior in plasma-sprayed thermal barrier coating system." Surface and Coatings Technology 173 (2003): 178-184.
[47] Z. X. Chen, Z. G. Wang, F. H. Yuan, and S. J. Zhu. "Interfacial fracture behavior of a thermal barrier coating system under four-point bend loading." Materials Science and Engineering: A 483 (2008): 629-632.
[48] W. G. Mao, C. Y. Dai, L. Yang, and Y. C. Zhou. "Interfacial fracture characteristic and crack propagation of thermal barrier coatings under tensile conditions at elevated temperatures." International Journal of Fracture 151 (2008): 107-120.
[49] U. Wiklund, P. Hedenqvist, and S. Hogmark. "Multilayer cracking resistance in bending." Surface and Coatings Technology 97 (1997): 773-778.
[50] V. Teixeira. "Residual stress and cracking in thin PVD coatings." Vacuum 64 (2002): 393-399.
[51] Z. X. Gui, K. Wang, Y. S. Zhang, and B. Zhu. "Cracking and interfacial debonding of the Al–Si coating in hot stamping of pre-coated boron steel." Applied Surface Science 316 (2014): 595-603.
[52] T. B. Massalski. "Binary alloy phase diagrams." ASM international 3 (1992): 2874.
[53] H. R. Shahverdi, M. R. Ghomashchi, S. Shabestari, and J. Hejazi. "Microstructural analysis of interfacial reaction between molten aluminium and solid iron." Journal of Materials Processing Technology 124 (2002): 345-352.
[54] G. Eggeler, W. Auer, and H. Kaesche. "Reactions between low alloyed steel and initially pure as well as iron-saturated aluminum melts between 670 and 800-degrees-c." Zeitschrift fur Metallkunde 77 (1986): 239-244.
[55] K. Bouche, F. Barbier, and A. Coulet. "Intermetallic compound layer growth between solid iron and molten aluminium." Materials Science and Engineering: A 249 (1998): 167-175.
[56] W. J. Cheng and C. J. Wang. "Growth of intermetallic layer in the aluminide mild steel during hot-dipping." Surface and Coatings Technology 204, (2009): 824-828.
[57] T. Heumanncand and S. Dittrich. "Uber die Kinetik der Reaktion von festem und flûssigem Aluminium mit Eisen." Zeitschrift fur Metallkunde 50 (1959): 617-625.
[58] N. Takata, M. Nishimoto, S. Kobayashi, and M. Takeyama. "Crystallography of Fe2Al5 phase at the interface between solid Fe and liquid Al." Intermetallics 67 (2015): 1-11.
[59] W. J. Cheng and C. J. Wang. "Study of microstructure and phase evolution of hot-dipped aluminide mild steel during high-temperature diffusion using electron backscatter diffraction." Applied Surface Science 257 (2011): 4663-4668.
[60] Y. Y. Chang, C. C. Tsaur, and J. C. Rock. "Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation." Surface and Coatings Technology 200 (2006): 6588-6593.
[61] V. A. Chianeh, H. R. M. Hosseini, and M. Nofar. "Micro structural features and mechanical properties of Al–Al3Ti composite fabricated by in-situ powder metallurgy route." Journal of Alloys and Compounds 473 (2009): 127-132.
[62] H. Springer, A. Kostka, E. J. Payton, D. Raabe, A. Kaysser-Pyzalla, and G. Eggeler. "On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys." Acta Materialia 59 (2011): 1586-1600.
[63] H. Springer, A. Kostka, J. F. Dos Santos, and D. Raabe. "Influence of intermetallic phases and Kirkendall-porosity on the mechanical properties of joints between steel and aluminium alloys." Materials Science and Engineering: A 528 (2011): 4630-4642.
[64] W. J. Cheng, Y. J. Liao, and C. J. Wang. "Effect of nickel pre-plating on high-temperature oxidation behavior of hot-dipped aluminide mild steel." Materials Characterization 82 (2013): 58-65.
[65] N. S. Stoloff. "Iron aluminides: present status and future prospects." Materials Science and Engineering: A 258 (1998): 1-14.
[66] S. C. Deevi and V. K. Sikka. "Advances in processing of Ni3Al-based intermetallics and applications." Intermetallics 8 (2000): 1329-1337.
[67] D. G. Morris, M. A. Munoz-Morris, and J. Chao. "Development of high strength, high ductility and high creep resistant iron aluminide." Intermetallics 12 (2004): 821-826.
[68] D. G. Morris and M. A. Morris-Munoz. "The influence of microstructure on the ductility of iron aluminides." Intermetallics 7 (1999): 1121-1129.
[69] N. S. Stoloff and V. K. Sikka. Physical Metallurgy and Processing of Intermetallic Compounds. New York, NY: Chapman & Hall (1996): 362.
[70] C. T. Liu, V. K. Sikka, and C. G. McKamey. Alloy development of FeAl aluminide alloys for structural use in corrosive environments. No. ORNL/TM–12199. Oak Ridge National Lab., TN (United States), (1993): 363.
[71] C. G. McKamey, J. H. DeVan, P. F. Tortorelli, and V. K. Sikka. "A review of recent developments in Fe3Al-based alloys." Journal of Materials Research 6 (1991): 1779-1805.
[72] C. G. McKamey, P. J. Maziasz, and J. W. Jones. "Effect of addition of molybdenum or niobium on creep-rupture properties of Fe3Al." Journal of Materials Research 7 (1992): 2089-2106.
[73] C. G. McKamey and P. J. Maziasz. "Heat treatment effects for improved creep-rupture resistance of a Fe3Al-based alloy." Intermetallics 6 (1998): 303-314.
[74] F. Kral, P. Schwander, G. Kostorz, S.C. Deevi, V.K. Sikka, P.J. Maziasz, and R.W. Cahn. International Symposium on Nickel and Iron Aluminides: Processing, Properties, and Applications: proceedings from Materials Week'96. Materials Park, OH: ASM International (1997): 337
[75] S. H. Ko, R. Gnanamoorthy, and S. Hanada. "Effect of environment on tensile ductility and fracture toughness of iron aluminides." Materials Science and Engineering: A 222, (1997): 133-139.
[76] D. G. Morris and M. A. Munoz-Morris. "A re-examination of the pinning mechanisms responsible for the stress anomaly in FeAl intermetallics." Intermetallics 18 (2010): 1279-1284.
[77] C. G. McKamey and D. H. Pierce. "Effect of recrystallization on room temperature tensile properties of an Fe3Al-based alloy.[Fe-28Al-5Cr-0. 1Zr-0. 05B]." Scripta Metallurgica et Materialia (United States) 28 (1993).
[78] M. Rudy, G. Sauthoff, C. C. Koch, C. T. Liu, and N. S. Stoloff. "High-temperature ordered intermetallic alloys." MRS 39 (1985): 327.
[79] A. Lawley, J. A. Coll, and R. W. Cahn. "Influence of crystallographic order on creep of iron-aluminum solid solutions." Transactions of the American Institute of Mining and Metallurgical Engineers 218 (1960): 166-176.
[80] J. D. Whittenberger, R. K. Viswanadham, S. K. Mannan, and B. Sprissler. "Elevated temperature slow plastic deformation of NiAl-TiB 2 particulate composites at 1200 and 1300K." Journal of Materials Science 25 (1990): 35-44.
[81] J. D. Whittenberger, M. V. Nathal, S. V. Raj, and V. M. Pathare. "Slow strain rate 1200–1400 K compressive properties of NiAl-1Hf." Materials Letters 11 (1991): 267-272.
[82] N. S. Stoloff and V. K. Sikka. Physical Metallurgy and Processing of Intermetallic Compounds. New York, NY: Chapman & Hall (1996): 102.
[83] W. J. Cheng and C. J. Wang. "Characterization of intermetallic layer formation in aluminide/nickel duplex coating on mild steel." Materials Characterization 69 (2012): 63-70.
[84] P. Nash, M. F. Singleton, and J. L. Murray. "Phase Diagrams of Binary Nickel Alloys." Monograph Series on Alloy Phase Diagrams. Materials Park, OH: ASM International (1991): 390-394.
[85] A. M. Hodge and D. C. Dunand. "Synthesis of nickel–aluminide foams by pack-aluminization of nickel foams." Intermetallics 9 (2001): 581-589.
[86] G. W. Goward and D. H. Boone. "Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys." Oxidation of Metals 3 (1971): 475-495.
[87] M. M. P. Janssen. "Diffusion in the nickel-rich part of the nickel-aluminum system at 1000 to 1300 deg. nickel-aluminum (Ni3A1) layer growth, diffusion coefficients, and interface concentrations." Metallurgical Transactions 4 (1973): 1623-1633.
[88] N. S. Stoloff and V. K. Sikka. Physical Metallurgy and Processing of Intermetallic Compounds. New York, NY: Chapman & Hall (1996): 221.
[89] R. Darolia, Ram. "NiAl alloys for high-temperature structural applications." JOM 43 (1991): 44-49.
[90] J. A. Horton, C. T. Liu, and M. L. "Microstructures and mechanical properties of Ni3Al alloyed with iron additions." Metallurgical Transactions A 18 (1987): 1265-1277.
[91] H. Vehoff. "Fracture and Toughness of Intermetallics." MRS Online Proceedings Library Archive 288 (1992).
[92] K. S. Kumar, S. K. Mannan, and R. K. Viswanadham. "Fracture toughness of NiAl and NiAl-based composites." Acta Metallurgica et Materialia 40 (1992): 1201-1222.
[93] J. D. Rigney and J. J. Lewandowski. "Fracture toughness of monolithic nickel aluminide intermetallics." Materials Science and Engineering: A 149 (1992): 143-151.
[94] C. T. Lu, A. G. Evans, R. J. Hecht, and R. Mehrabian. "Toughening of MoSi2 with a ductile (niobium) reinforcement." Acta Metallurgica et Materialia 39 (1991): 1853-1862.
[95] J. M. Yang, W. H. Kao, and C. T. Liu. "Development of nickel aluminide matrix composites." Materials Science and Engineering: A 107 (1989): 81-91.
[96] M. G. Mendiratta, J. J. Lewandowski, and D. M. Dimiduk. "Strength and ductile-phase toughening in the two-phase Nb/Nb5Si3 alloys." Metallurgical Transactions A 22 (1991): 1573.
[97] G. R. Odette, B. L. Chao, J. W. Sheckherd, and G. E. Lucas. "Ductile phase toughening mechanisms in a TiAl-TiNb laminate composite." Acta Metallurgica et Materialia 40 (1992): 2381-2389.
[98] B. Budiansky, J. C. Amazigo, and A. G. Evans. "Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics." Journal of the Mechanics and Physics of Solids 36 (1988): 167-187.
[99] D. F. Lahrman, R. D. Field, and R. Darolia. "The effect of strain rate on the mechanical properties of single crystal NiAl." MRS Online Proceedings Library Archive 213 (1990): 603.
[100] R. D. Noebe, C. L. Cullers, and R. R. Bowman. "The effect of strain rate and temperature on the tensile properties of NiAl." Journal of Materials Research 7 (1992): 605-612.
[101] Y. Y. Chang, W. J. Cheng, and C. J. Wang. "Growth and surface morphology of hot-dip Al–Si on 9Cr-1Mo steel." Materials Characterization 60 (2009): 144-149.
[102] M. Z. Khalid, J. Friis, P. H. Ninive, K. Marthinsen, and A. Strandlie. "DFT calculations based insight into bonding character and strength of Fe2Al5 and Fe4Al13 intermetallics at Al-Fe joints." Procedia Manufacturing 15 (2018): 1407-1415.
[103] C. C. Tsaur, J. C. Rock, C. J. Wang, and Y. H. Su. "The hot corrosion of 310 stainless steel with pre-coated NaCl/Na2SO4 mixtures at 750 C." Materials Chemistry and Physics 89 (2005): 445-453.
[104] M. B. Lin, C. J. Wang, and A. A. Volinsky. "Isothermal and thermal cycling oxidation of hot-dip aluminide coating on flake/spheroidal graphite cast iron." Surface and Coatings Technology 206 (2011): 1595-1599.
[105] M.A. Clevinger, K.M. Kessell, C.G. Messina, and H.M. Ondik, The American Ceramic Society, Inc., OH (United States), (1989) Fig. 7109.
[106] B. Lemmens, H. Springer, M. Peeters, I. De Graeve, J. De Strycker, D. Raabe, and K. Verbeken. "Deformation induced degradation of hot-dip aluminized steel." Materials Science and Engineering: A 710 (2018): 385-391.
[107] C. A. Hippsley and J. H. DeVan. "A study of high temperature crack growth in nickel-aluminide." Acta Metallurgica 37 (1989): 1485-1496.
[108] J. W. Hutchinson and Z. G. Suo. "Mixed mode cracking in layered materials." Advances in Applied Mechanics 29 (1991): 63-191.
[109] M. D. Thouless. "Crack spacing in brittle films on elastic substrates." Journal of the American Ceramic Society 73 (1990): 2144-2146.
[110] A. G. Evans and J. W. Hutchinson. "On the mechanics of delamination and spalling in compressed films." International Journal of Solids and Structures 20 (1984): 455-466.
[111] M. S. Hu and A. G. Evans. "The cracking and decohesion of thin films on ductile substrates." Acta Metallurgica 37 (1989): 917-925.
[112] Y. Sugimura, P. G. Lim, C. F. Shih, and S. Suresh. "Fracture normal to a bimaterial interface: effects of plasticity on crack-tip shielding and amplification." Acta Metallurgica et Materialia 43 (1995): 1157-1169.
[113] H. E. Evans. "Spallation models and their relevance to steam-grown oxides." Materials at High Temperatures 22 (2005): 155-166.
[114] P. F. Tortorelli and K. Natesan. "Critical factors affecting the high-temperature corrosion performance of iron aluminides." Materials Science and Engineering: A 258 (1998): 115-125.
[115] D. Janda, H. Fietzek, M. Galetz, and M. Heilmaier. "The effect of micro-alloying with Zr and Nb on the oxidation behavior of Fe3Al and FeAl alloys." Intermetallics 41 (2013): 51-57.
[116] R. F. Tortorelli and J. H. DeVan. "Behavior of iron aluminides in oxidizing and oxidizing/sulfldizing environments." High Temperature Aluminides and Intermetallics (1992): 573-577.
[117] C. J. Wang and S. M. Chen. "The high-temperature oxidation behavior of hot-dipping Al–Si coating on low carbon steel." Surface and Coatings Technology 200 (2006): 6601-6605.
[118] A. D. Le Claire. "Solute diffusion in dilute alloys." Journal of Nuclear Materials 69 (1978): 70-96.
[119] O. Klein, P. Nagpal, and I. Baker. "High temperature ordered intermetallics." MRS Symposium Proceedings 288 (1993): 935.
[120] J. H. Schneibel and M. G. Jenkins. "Slow crack growth at room temperature in FeAl." Scripta Metallurgica et Materialia 28 (1993): 389-393.
[121] H. Springer, A. Kostka, E. J. Payton, D. Raabe, A. Kaysser-Pyzalla, and G. Eggeler. "On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys." Acta Materialia 59 (2011): 1586-1600.
[122] B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau, and A. Pineau. “Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part I: Effect of tensile holding period on fatigue lifetime.” International Journal of Fatigue 30 (2008): 649-662.
[123] D. D. Wang and Z. Y. Shi. "Aluminizing and oxidation treatment of 1Cr18Ni9 stainless steel." Applied Surface Science 227 (2004): 255-260.
[124] K. Stein-Fechner, J. Konys, and O. Wedemeyer. "Investigations on the transformation behavior of the intermetallic phase (Fe, Cr) 2Al5 formed on MANET II steel by aluminizing." Journal of nuclear materials 249 (1997): 33-38.
[125] D. R. G. Achar, J. Ruge, and S. Sundaresan. "Joining aluminum and steel, especially by means of welding." Aluminum Monography, Aluminum-Verlag, Düsseldorf (1980).
[126] W. J. Cheng and C. J. Wang. "Observation of high-temperature phase transformation in the Si-modified aluminide coating on mild steel using EBSD." Materials characterization 61 (2010): 467-473.
[127] T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, in: Binary Alloy Phase Diagrams, Vol. 1. (ASM International, Metals Park, OH, USA, 1990) p.212.
[128] J. Grin, U. Burkhardt, M. Ellner and K. Peters. "Refinement of Fe4Al13 structure and its relationship to the quasihomological homeo- typical structures. " Zeitschrift fuer Kristallographie 209 (1994) 479-487.
[129] U. Burkhardt, Y. Grin, M. Ellner, and K. Peters. "Structure refinement of the iron–aluminium phase with the approximate composition Fe2Al5." Acta Crystallographica Section B: Structural Science 50 (1994): 313-316.
[130] R. N. Corby and P. J. Black. "The structure of FeAl2 by anomalous dispersion methods." Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 29 (1973): 2669-2677.
[131] L. J. Zhang, J. Wang, Y. Du, R. X. Hu, P. Nash, X. G. Lu, and C. Jiang. "Thermodynamic properties of the Al–Fe–Ni system acquired via a hybrid approach combining calorimetry, first-principles and CALPHAD." Acta Materialia 57 (2009): 5324-5341.

QR CODE