簡易檢索 / 詳目顯示

研究生: 涂幃育
Wei-Yu Tu
論文名稱: 應用於光獵能系統之單電感升降壓轉換器
Single-Inductor Buck-Boost Converter Applied for Light-Harvesting
指導教授: 陳伯奇
Po-Ki Chen
口試委員: 黃育賢
Yuh-Shyan Hwang
盧志文
Chi-Wen Lu
鍾勇輝
Yung-Hui Chung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 85
中文關鍵詞: 切換式升降壓轉換器獵能技術CMOS前照式太陽能電池
外文關鍵詞: buck–boost converter, energy harvesting techniques, CMOS front side solar cell
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種應用於光獵能系統之單電感升降壓轉換器,以CMOS太陽能電池做為輸入來源,經電源管理單元,為感測器、類比至數位轉換器等後端電路提供穩定的電源。由於 CMOS太陽能電池供應能量極低,使用傳統轉換器架構無法針對不同負載做最佳化。為了解決輕載轉換效率低落的問題並同時提升重載轉換效率,本論文使用一新型轉換器架構,得以將輕載與重載能量傳輸路徑分離以個別最佳化,降低開關損耗,同時在重載模式下,控制電路偵測到太陽能電池達到最大功率點時,將超級電容與太陽能電池以串聯的形式供電,使單周期供應能量提高;而在太陽能電池尚未達到最大功率點時,持續以超級電容輔助供電。
    本論文下線晶片使用 TSMC 0.18μm CMOS標準製程實現,整體晶片佈局面積含 I/O pads為1.356mm2,CMOS太陽能電池輸入電壓為 0V~0.55V,輸出電壓為 1V,負載電流範圍坐落於 0.001 mA ~1mA,其中在負載電流為 1mA(重載)情況下,可達最高能量轉換效率 95.26%,並於 0.001mA(輕載)情況下,最高轉換效率可達 89.32%。


    This thesis presented a single inductor buck-boost converter applied to harvest light energy through CMOS solar cell and provide steady power for the back-end circuits, such as sensor, ADC and other circuits through the power management unit. Due to the extremely low energy supplied by CMOS solar cell, the traditional converter architecture cannot be optimized under different load conditions. In order to enhance the light and heavy load conversion efficiencies simultaneously, a novel converter architecture is adopted to this thesis to separate the light load and heavy load transmission paths and individually optimize the switching loss. Under heavy load, the super capacitor and solar cell are connected in series to boost up the single cycle supply energy when the solar cell reaches maximum power point(MPP). When the solar cell has not yet reached the MPP, the super capacitor supplies power to the load to help stabilize the output voltage.
    The propose circuit is fabricated in a TSMC 0.18μm 1P6M CMOS process with a chip area of 1.356mm2 including I/O Pads. The input voltage of the CMOS solar cell is 0V~0.55V. The output voltage is 1V and the load current range is 0.001mA~1mA. The maximum conversion efficiency reaches 95.26% when the load current is 1mA (heavy load) and the conversion efficiency is 89.32% when the load current is 0.001mA(light load).

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖目錄 VII 表目錄 X 第1章 緒論 1 1-1 研究背景與動機 1 1-2 論文架構 3 第2章 太陽能電池與最大功率追蹤技術 4 2-1 太陽能電池 4 2-1-1 太陽能電池原理 5 2-1-2 太陽能電池結構 7 2-1-3 太陽能電池等效電路模型與特性 7 2-2 最大功率追蹤技術介紹 9 2-2-1 擾動觀察法 10 2-2-2 增量電導法 12 2-2-3 開路電壓法 13 2-2-4 短路電流法 13 2-2-5 模糊邏輯 14 2-2-6 類神經網路 16 第3章 同步整流式直流轉換器介紹 17 3-1 功率級 18 3-1-1 連續導通模式 20 3-1-2 不連續導通模式 22 3-1-3 邊界導通模式 24 3-2 控制級 25 3-2-1 電壓模式控制 25 3-2-2 電流模式控制 28 3-2-3 漣波控制技術 31 3-2-4 自適性導通時間控制技術 32 3-3 效率考量 36 3-3-1 導通損失 36 3-3-2 切換損失 37 3-3-3 驅動損失 39 3-4 同步整流式直流轉換器參數 39 3-4-1 負載調節率 40 3-4-2 線性調節率 40 3-4-3 負載暫態響應 40 3-4-4 輸出電壓漣波 41 3-4-5 轉換效率 42 第4章 電路設計與實現 43 4-1 應用於光獵能系統之電源管理晶片設計 43 4-1-1 設計標的 43 4-1-2 整體架構介紹 44 4-1-3 比較器 44 4-1-4 模式控制電路 51 4-1-5 自適性導通時間控制器 54 4-1-6 具休眠機制之零電流偵測器 55 4-1-7 最大功率追蹤電路 58 4-1-8 非重疊時脈產生電路、閘極驅動電路與位準位移電路 61 4-1-9 超低功耗電壓參考電路 63 4-1-10 防震盪電路 65 第5章 模擬結果 66 5-1 模擬環境考量 66 5-2 同步整流式直流轉換器模擬結果 67 5-2-1 子電路模擬 67 5-2-2 穩態響應模擬 69 5-2-3 暫態響應模擬 73 5-2-4 轉換效率 76 5-3 電路佈局圖 77 5-4 量測環境考量 78 第6章 結論與未來展望 79 6-1 結論 79 6-2 效能比較 80 6-3 未來展望 81 參考文獻 83

    [1] IoT Analytics. IoT 2021 in review: The 10 Most Relevant IoT Developments of the Year. (2022). Avalible: https://iot-analytics.com/iot-2021-in-review/
    [2] Gartner. Forecast: IoT Semiconductors, Worldwide, 4Q21 Update. (2022). Avalible: https://www.gartner.com/en/documents/4010669
    [3] Embedded. Fighting wildfires with the IoT. (2021).
    Avalible: https://www.embedded.com/fighting-wildfires-with-the-iot/
    [4] M. A. Green, E. D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis and X. Hao, “Solar cell efficiency tables (Version 59),” Prog Photovolt Res Appl, 2022.
    [5] R. D. Prabha and G. A. Rincón-Mora, “Drawing the Most Power From Low-Cost Single-Well 1-mm2 CMOS Photovoltaic Cells,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 1, pp. 46-50, Jan. 2017.
    [6] B. Razavi, Fundamentals of Microelectronics, 3rd ed, Wiley, 2021.
    [7] Neamen, Donald A, Semiconductor Physics and Devices: Basic Principles, 4th ed, McGraw-Hill, 2012.
    [8] Y. Hung, H. Su, C. Chun, J. Chen, C. Huang and M. Cai, “Enhanced Efficiency in Backside-Illuminated Deep-n-Well-Assisted CMOS Photovoltaic Devices,” IEEE Electron Device Letters, vol. 36, no. 11, pp. 1169-1171, Nov. 2015.
    [9] A. Khaligh and O. C. Onar, Energy harvesting: solar, wind, and ocean energy conversion system, CRC Press, 2010.
    [10] B. Bendib, H. Belmili and F. Krim, “A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems,” Renewable Sustainable Energy Reviews, vol. 45, pp. 637-648, May 2015.
    [11] N. Kumar, I. Hussain, B. Singh and B. K. Panigrahi, “Framework of Maximum Power Extraction From Solar PV Panel Using Self Predictive Perturb and Observe Algorithm,” IEEE Transactions on Sustainable Energy, vol. 9, no. 2, pp. 895-903, April 2018.
    [12] D. Sera, L. Mathe, T. Kerekes, S. V. Spataru and R. Teodorescu, “On the Perturb-and-Observe and Incremental Conductance MPPT Methods for PV Systems,” IEEE Journal of Photovoltaics, vol. 3, no. 3, pp. 1070-1078, July 2013.
    [13] D. Baimel, S. Tapuchi, Y. Levron and J. Belikov, “Improved Fractional Open Circuit Voltage MPPT Methods for PV Systems,” Electronics, Mar. 2019.
    [14] M. A. Husain, A. Tariq, S. Hameed, M. S. Bin Arif and A. Jain, “Comparative assessment of maximum power point tracking procedures for photovoltaic systems,” Green Energy & Environment, vol. 2, 2017.
    [15] D. Driankov, H. Hellendoorn and M. Reinfrank, An introduction to fuzzy control, Springer, 1993.
    [16] T. Esram and P. L. Chapman, “Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques,” IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439-449, June 2007.
    [17] 梁適安, 交換式電源供給器之理論與實務設計, 第三版, 全華圖書, 2018.
    [18] K.-H. Chen, Power Management Techniques for Integrated Circuit Design, Wiley, 2016.
    [19] R. W. Erickson, D. Maksimović, Fundamentals of Power Electronics, 2nd ed, Kluwer Academic, 2001.
    [20] O. Abdel-Rahman, J. A. Abu-Qahouq, L. Huang and I. Batarseh, “Analysis and Design of Voltage Regulator With Adaptive FET Modulation Scheme and Improved Efficiency,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 896-906, Mar. 2008.
    [21] O. López-Santos, L. Martínez-Salamero, G. García, H. Valderrama-Blavi and D. O. Mercuri, “Efficiency analysis of a sliding-mode controlled quadratic boost converter,” IET Power Electronics, vol. 6, no. 2, pp. 364-373, Feb. 2013.
    [22] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd ed, McGraw-Hill, 2016.
    [23] 吳義利, 切換式電源轉換器原理與實用設計技術(實例設計導向), 第三版, 2018.
    [24] O. Abdel-Rahman, J. A. Abu-Qahouq, L. Huang and I. Batarseh, “Analysis and Design of Voltage Regulator With Adaptive FET Modulation Scheme and Improved Efficiency,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 896-906, Mar. 2008.
    [25] Y. -S. Noh et al., “17.6 A Reconfigurable DC-DC Converter for Maximum TEG Energy Harvesting in a Battery-Powered Wireless Sensor Node,” 2021 IEEE International Solid- State Circuits Conference (ISSCC), pp. 266-268, 2021.
    [26] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 3rd ed, Oxford University Press, Aug. 2011.
    [27] Y. Gao, S. Wang, H. Li, L. Chen, S. Fan and L. Geng, “A novel zero-current-detector for DCM operation in synchronous converter,” 2012 IEEE International Symposium on Industrial Electronics, pp. 99-104, 2012.
    [28] H. Wu, C. Wei, Y. Hsu and R. B. Darling, “Adaptive Peak-Inductor-Current-Controlled PFM Boost Converter With a Near-Threshold Startup Voltage and High Efficiency,” IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1956-1965, Apr. 2015.
    [29] T. -W. Hsu, H. -H. Wu, D. -L. Tsai and C. -L. Wei, “Photovoltaic Energy Harvester With Fractional Open-Circuit Voltage Based Maximum Power Point Tracking Circuit,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 2, pp. 257-261, Feb. 2019.
    [30] A. C. de Oliveira, D. Cordova, H. Klimach and S. Bampi, “Picowatt, 0.45–0.6 V Self-Biased Subthreshold CMOS Voltage Reference,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 12, pp. 3036-3046, Dec. 2017.
    [31] L. Magnelli, F. Crupi, P. Corsonello, C. Pace and G. Iannaccone, “A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference,” IEEE Journal of Solid-State Circuits, vol. 46, no. 2, pp. 465-474, Feb. 2011.
    [32] R. Damodaran Prabha and G. A. Rincón-Mora, “0.18-μm Light-Harvesting Battery-Assisted Charger–Supply CMOS System,” IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 2950-2958, Apr. 2016.
    [33] H. Lee, C. Liu, M. Takamiya and P. Chen, “Single-Inductor Dual-Input Dual-Output Battery-PV Hybrid System With 2-D Adaptive On-Time Control for Internet of Things,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 3, pp. 1069-1078, Mar. 2020.
    [34] P. -H. Chen, H. -C. Cheng and C. -L. Lo, “A Single-Inductor Triple-Source Quad-Mode Energy-Harvesting Interface With Automatic Source Selection and Reversely Polarized Energy Recycling,” IEEE Journal of Solid-State Circuits, vol. 54, no. 10, pp. 2671-2679, Oct. 2019.
    [35] H. Kim, J. Maeng, I. Park, J. Jeon, D. Lim and C. Kim, “A 90.2% Peak Efficiency Multi-Input Single-Inductor Multi-Output Energy Harvesting Interface With Double-Conversion Rejection Technique and Buck-Based Dual-Conversion Mode,” IEEE Journal of Solid-State Circuits, vol. 56, no. 3, pp. 961-971, March 2021.

    無法下載圖示 全文公開日期 2027/08/19 (校內網路)
    全文公開日期 2027/08/19 (校外網路)
    全文公開日期 2027/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE