簡易檢索 / 詳目顯示

研究生: 黃國瑋
Kuo-Wei Huang
論文名稱: 低功耗之寬頻帶與鎖定頻率範圍注入鎖定除頻器之設計
Design of Low Power Wide Band and Locking Range Injection-Locked Frequency Divider
指導教授: 張勝良
Sheng-Lyang Jang
徐敬文
Ching-Wen Hsue
口試委員: 莊敏宏
Miin-Horng Juang
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 148
中文關鍵詞: 壓控震盪器注入鎖定除頻器鎖定除頻範圍
外文關鍵詞: VCO, ILFD, locking range
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線通訊收發機中,鎖相迴路是用於實現頻率及相位的同步技術。在鎖相迴路裡面,包含頻率相位偵測器、充電幫浦、迴路濾波器、電壓控制震盪器、除頻器是主要組成的核心電路,我們主要的研究方向是電壓控制震盪器及除頻器,這兩塊核心電路最具影響鎖相迴路效能,目標要達到低功耗、低相位雜訊、有較寬的工作頻率範圍。
    第一部分,呈現一個C類交叉對共振腔震盪器,實現寬頻注入鎖定除頻器,可以用於除2及除4的除頻器,此除頻器使用台積電0.18微米製程,晶片面積為1.1496 * 1.089 mm2。此電路包含由兩個N型金氧半電晶體交錯耦合對為中心所組成的電壓控制震盪器,以及一個用來注入訊號的N型金氧半電晶體並聯共振腔三個電感所組成。除4除頻器為工作電壓操作在1.1伏特,整體功耗為10.6 mW,在注入強度為0 dBm時,除頻範圍可從8.03 GHz ~ 11.56 GHz,百分比為36.04 %。除2除頻器為工作電壓操作在1.05伏特,整體功耗為8.01 mW,在注入強度為0 dBm時,除頻範圍可從1.72 GHz ~ 7.51 GHz,百分比為125.46 %。
    第二部分,呈現一個C類交叉對共振腔震盪器,實現寬頻注入鎖定除頻器,可以用於除2及除4的除頻器,此除頻器使用台積電0.18微米製程,晶片面積為0.5593 * 0.976 mm2。此電路包含由兩個N型金氧半電晶體交錯耦合對為中心所組成的電壓控制震盪器,以及一個用來注入訊號的N型金氧半電晶體並聯共振腔兩個電感所組成。除4除頻器為工作電壓操作在1伏特,整體功耗為6.62 mW,在注入強度為0 dBm時,除頻範圍可從14.4 GHz ~ 16.94 GHz,百分比為16.21 %。除2除頻器為工作電壓操作在0.8伏特,整體功耗為4.07 mW,在注入強度為0 dBm時,除頻範圍可從3.6 GHz ~ 10.1 GHz,百分比為94.891 %。
    最後,呈現一個C類交叉對共振腔震盪器,實現寬頻注入鎖定除奇數除頻器,此除頻器使用台積電矽鍺0.18微米製程,晶片面積為0.817 * 1.176 mm2。此電路包含由兩個N型金氧半電晶體交錯耦合對為中心所組成的電壓控制震盪器,以及一組雙注入訊號的N型金氧半電晶體並聯共振腔三個電感、兩個電阻、兩個電容所組成。工作電壓操作在0.9伏特,整體功耗為7.58 mW,在注入強度為0 dBm時,除5的除頻範圍可從11.2 GHz ~ 14.4 GHz,百分比為25.26 %;除3的除頻範圍可從5.73 GHz ~ 10.02 GHz,百分比為54.47 %;除1的除頻範圍可從1.63 GHz ~ 3.36 GHz,百分比為69.34 %。


    In a RF transceiver of the wireless communication system, PLL keep the input and output phase in lock step also implies keeping the input and output frequencies the same. PLL, including Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF), Voltage Controlled Oscillator (VCO), and Frequency Divider (FD), are important circuits. We major in Voltage Controlled Oscillator (VCO) and Frequency Divider (FD). The two parts influence the performance. Low power, low phase noise, and wide operating frequency range are what we focus on goals.
    First, a wide locking range LC injection-locked frequency divider (ILFD) using lumped inductor as the resonator. The ILFD was implemented in the TSMC 0.18 μm 1P6M CMOS process and it shows the property of dual-resonance ILFD. The ILFD uses a capacitive cross-coupled voltage-controlled oscillator (VCO) as the core and also uses one direct injection MOSFET. The dc gate bias of cross-coupled FETs is smaller than dc drain bias. The dc gate bias of injection MOSFET is smaller than dc drain/source bias. The ILFD can be used as a divide-by-2 or divide-by-4 ILFD. The die area is 1.1496 × 1.089 mm2. At the drain-source bias of 1.1 V, and at the incident power of 0 dBm the locking range of the divide-by-4 ILFD is 3.53 GHz (36.04%) from 8.03 to 11.56 GHz. The core power consumption is 10.6 mW. At the dc drain-source bias of 1.05 V and at the incident power of 0 dBm the locking range of the divide-by-2 ILFD is 5.79 GHz (125.46%) from 1.72 to 7.51GHz. The core power consumption is 8.01mW.
    Secondly, we design a injection-locked frequency divider (ILFD) using a capacitive cross-coupled voltage-controlled oscillator (VCO) with one direct injection MOSFET. The ILFD uses two on-chip inductors in the resonator and has overlapped dual-band locking ranges. The LC ILFD was implemented in the TSMC 0.18 μm 1P6M CMOS process. The dc gate bias of cross-coupled switching FETs is smaller than dc drain bias and is used to tradeoff the locking range and power consumption. The ILFD uses two on-chip inductors. The ILFD can be used as a divide-by-2 or divide-by-4 ILFD. The die area is 0.559 × 0.976 mm2. At the drain-source bias of 1 V, and at the incident power of 0 dBm the locking range of the divide-by-4 ILFD is 2.54 GHz (16.21%) from 14.4 to 16.94 GHz, the percentage is 16.21%. The core power consumption is 6.62 mW. At the drain-source bias of 0.8 V, and at the incident power of 0 dBm the locking range of the divide-by-2 ILFD is 6.5 GHz (94.891%) from 3.6 to 10.1 GHz. The core power consumption is 4.07 mW.
    Finally, a wide locking range divide-by-odd number injection-locked frequency divider (ILFD) using a standard 0.18 μm BiCMOS process is presented. The ILFD circuit bases on capacitive cross-coupled oscillator and uses resonator with resistor to enhance the locking range. The power consumption of the ILFD core is 7.58 mW. The divider’s free-running frequency is around 2.5 GHz, and at the incident power of 0 dBm the divide-by-5 locking range is 3.23 GHz (25.26%), from the incident frequency 11.17 to 14.4 GHz; the divide-by-3 locking range is 4.29 GHz (54.47%), from the incident frequency 5.73 to 10.02 GHz; the divide-by-1 locking range is 1.73 GHz (69.34%), from the incident frequency 1.63 to 3.36 GHz.

    中文摘要 Abstract 誌謝 Table of Contents List of Figures List of Tables Chapter 1 Introduction 1.1 Background 1.2 Thesis Organization Chapter 2 Overview of the Oscillators 2.1 Introduction 2.2 Basic Theory of Oscillators 2.2.1 One-Port (Negative Resistance) View 2.2.2 Two-Port (Feedback) View 2.3 Classification of Oscillators 2.3.1 LC-Tank Oscillator 2.3.2 Resonatorless Oscillators 2.4 Parallel RLC Tank 2.4.1 Inductor 2.4.2 Transformer 2.4.3 Resistors 2.4.4 Capacitors 2.4.5 MOSFET Varactors 2.5 Design Concepts of VCOs 2.5.1 VCO Characteristic Parameters 2.5.2 Phase Noise in Oscillators 2.5.3 Quality Factor 2.5.4 Pulling in Oscillators 2.5.5 Tail current Source Chapter 3 Overviews of Injection Locked Frequency Divider 3.1 Introdution 3.2 Operation Principle 3.2.1 Locking Range 3.3 Example For A Single Injection of ILFD Chapter 4 A Wide-Locking Range Divide-by-2 And Divide-by-4 Injection-Locked Frequency Divider Using Capacitive Cross-Coupled Oscillator 4.1 Introduction 4.2 Circuit Design 4.3 Measurement Results 4.3.1 Measurement In The Divide-by-2 Mode 4.3.2 Measurement In The Divide-by-4 Mode Chapter 5 On the Locking Range of Divide-by-2 And Divide-by-4 Injection-Locked Frequency Divider Using Lumped Inductor 5.1 Introduction 5.2 Circuit Design 5.3 Measurement Results 5.3.1 Measurement In The Divide-by-2 Mode 5.3.2 Measurement In The Divide-by-4 Mode Chapter 6 Wide-Band ÷5 Injection-Locked Frequency Divider Using Capacitive Cross-coupled Transistors 6.1 Introduction 6.2 Circuit Design 6.3 Measurement Results 6.3.1 Measurement In The Divide-by-1 Mode 6.3.2 Measurement In The Divide-by-3 Mode 6.3.3 Measurement In The Divide-by-5 Mode Chapter 7 Conclusion References

    [1] N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May. 1992.
    [2] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
    [3] J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003.
    [4] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [5] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun. 1974.
    [6] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May. 1997.
    [7] P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
    [8] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [9] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June. 1989.
    [10] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June. 2000.
    [11] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp. 404-606, 6-10 Feb. 2005.
    [12] J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
    [13] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
    [14] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [15] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [16] A. Hajimiri and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May. 1999.
    [17] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June. 1999.
    [18] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July. 1996.
    [19] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [20] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [21] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [22] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [23] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection-locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June. 2001.
    [24] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July. 2002.
    [25] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25μm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002
    [26] H. Wu, Signal generation and processing in high-frequency/high-speed siliconbased integrated circuits, PhD thesis, California Institute of Technology, 2003.
    [27] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp. 1380-1385, Oct. 1973.
    [28] S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4injection locked frequency divider with quadrature outputs,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May. 2007.
    [29] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection-locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig.,pp. 2472–2481, Feb. 2006.
    [30] S.-L. Jang,C. C. Liuand C.-W. Chung, “A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4,pp. 236-238, April. 2009.
    [31] Z.-D. Huang, C.-Y. Wu, and B.-C. Huang, “Design of 24-GHz 0.8-V1.51-mW coupling current-mode injection-locked frequency dividerwith wide locking range,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 8, pp. 1948–1958, Aug. 2009.
    [32] S.-L. Jang, L.-Y. Tsai and C.-F. Lee, “A CMOS switched resonator frequency divider tuned by the switch gate bias,” Microwave and Optical Technology Lett., Vol. 50, no. 1, pp. 222-225, Jan. 2008.
    [33] L. Wu and H. C. Luong, “Analysis and design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz divide-by-4 injection-locked frequency divider with harmonic boosting,” IEEE Trans. Circuits and Systems-Part I, Regular Papers, vol. 60, no. 8, pp. 2001-2008, Nov. 2013.
    [34] Y.-H. Kuo, et al., “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 10, pp. 2477-2485, Oct. 2011.
    [35] A. Musa, K. Okada, and A. Matsuzawa, “Progressive mixing technique to widen the locking range of high division-ratio,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp. 1161-1173, Mar. 2013.
    [36] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, 39(9): pp. 1415-1424, Sept. 2004.
    [37] S.-S. Song, J. Han, M. Je, K. Han and H. Shin, “RF modeling of an MOS varactor and MIM capacitor in 0.18-um CMOS Technology,” J. the Korean Physical Society, Vol. 41, No. 6, pp. 922-926 De. 2002,.
    [38] C. P. Yue and S. S. Wong, “Physical Modeling of Spiral Inductors on Silicon,” IEEE Trans. Electron Devices, vol. 47, no. 3, pp. 560-568, Mar. 2000.
    [39] S.-L.Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, “Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters., vol. 51, 23, pp. 1888-1889, 2015.
    [40] S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang, “A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider,” Int. J. Electronics., vol. 98, no. 4, pp. 521-527, April. 2011.
    [41] M.-C. Chuang, J.-J.Kuo, C.-H.Wang, and H. Wang, “A 50 GHz divide-by-4 injection lock frequency divider using matching method,” IEEE Microw.Wireless Compon. Lett., vol. 18, pp. 344–346, May. 2008.
    [42] S.-L. Jang, and C.-C. Fu. “Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers,” Analog Integr Circ Sig Process, vol. 78, issue 2, pp. 523–528, Feb. 2014., Feb. 2014.
    [43] H. H. Hsieh, L.H. Lu, and H.S. Chen, “A V-Band divide-by-4 direct injection-locked frequency divider in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 393-404, Feb. 2011.
    [44] S.-L. Jang, Y.–T. Chang, C.-W. Hsue and M.-H. Juang, “Wide-locking range divide-by-4 injection-locked frequency divider using injection MOSFET DC-biased above threshold region,” published online Int. J. Circuit Theory and Applications, 2015.
    [45] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
    [46] K. Yamamoto and M. Fujishima, “55GHz CMOS frequency divider with 3.2GHz locking range” ESSCC, pp. 135-138, Aug. 2004.
    [47] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng, “Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October. 2013.
    [48] S.-L.Jang, and C.-Y. Lin, “A wide-locking range Class-C injection-locked frequency divider,” Electronics Letters ., vol. 50, 23, pp. 1710-1712, 2014.
    [49] S.-L.Jang, and C.-H. Fang, “Divide-by-4 capacitive cross-coupled injection-locked frequency dividers,” Analog Integr Circ Sig Process., 86:59-63, 2016.
    [50] Sheng-Lyang Jang, Li-Yu Huang, Ching-Wen Hsue, and Jhin Fang Huang, “Injection-Locked Frequency Divider Using Injection Mixer DC-Biased in Sub-threshold,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March. 2015.
    [51] Cao, Y., et al., “Frequency-independent equivalent-circuit model for on-chip spiral inductors,” IEEE J. Solid-State Circuits, Vol. 38, No. 3, 419, 2003.
    [52] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May. 2006.
    [53] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-μm CMOS technology,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 259–262, June. 2003.
    [54] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang, “LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
    [55] S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3161–3168, Oct. 2012.
    [56] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb. 2014.
    [57] S.-L. Jang, F.-B. Lin,and J.-F. Huang, “Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 12, Jan. 2015.
    [58] X. Yi, C. C. Boon, M. A. Do, K. S. Yeo, and W. M. Lim, “Design of ring-oscillator-based injection-locked frequency dividers with single-phase inputs”, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 559-561, 2011.
    [59] J. Jeong and Y. Kwon, “V-band high-order harmonic injection-locked frequency-divider MMICs with wide bandwidth and low-power dissipation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 1891-1898, Jun. 2005.
    [60] P.-K. Tsai, T.-H. Huang and Y.-H. Pang, “CMOS 40 GHz divide-by-5 injection-locked frequency divider,” IET Electronics Letters, vol.46, no. 14, pp. 1003-1004, Jul. 2010.
    [61] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide locking range, millimeter-wave divide-by-5 injection-locked frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679–685, Mar. 2012.
    [62] M. Jalalifar and G.-S. Byun, “A K-band divide-by-five injection-locked frequency divider using a near-threshold VCO,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 12, pp. 881-883, 2014.
    [63] S.-L. Jang, Y.-C. Kuo, C.-W. Hsue, and M.-H. Juang, “A triple-band Divide-by-2 CMOS injection-locked frequency divider,” Analog Integr Circ Sig Process., Vol. 86, no. 1, pp 33-38, Jan. 2016.
    [64] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, “Wide-locking range divide-by-3 injection-locked frequency divider using 6th-order RLC resonator,” to appear in IEEE Trans. Very Large Scale Integration Systems, 2016.
    [65] Z. Wu, Y. Tian, Y. Zhu, Y. Chi, and F. Huang, “N-pi equivalent circuit for si cmos onchip inductor modeling,” in Millimeter Waves, 2008. GSMM 2008. Global Symp., pp. 279–281.
    [66] A. M. Niknejad and R. G. Meyer, “Analysis, design, and optimization of spiral inductors and transformers for Si RF IC’s,” IEEE J. Solid-State Circuits, vol. 33, pp. 1470-1481, 1998.
    [67] S.-L.Jang, “Divide-by-3 injection-locked frequency dividers using dual-resonance resonator,” Analog Integr Circ Sig Process., Volume 85, Issue 2, pp 335-341, Nov., 2015.
    [68] Kennedy M. et al, “A high frequency ‘divide-by-odd number’ CMOS LC injection-locked frequency divider”, Analog Integr Circ Sig Process. pp 415-42, Oct. 2013.
    [69] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang, “Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. Electronics., Vol.E91-C, No.6, pp.956-962, Jun. 2008.
    [70] S.-L. Jang, R.-K. Yang, C.-W. Chang, and M.-H. Juang, “Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Microw. Wireless Compon. Lett., pp. 311-313, May, 2009.
    [71] S.-L. Jang, C.-F. Lee and J.-C. Luo, “A CMOS LC injection-locked frequency divider with the division ratio of 2 and 3,” Microw. Opt. Technol. Lett., pp. 1263-1267, May 2009.
    [72] S.-L. Jang, C.-Y. Lin, C.-C. Liu, and J.-F. Huang, “Dual-band CMOS injection-locked frequency divider with variable division ratio,” IEICE Trans. Electron., Vol.E92-C, No.4, pp.550-557, Apr. 2009.
    [73] H. Wu and L. Zhang, “A 16-to-18 GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Tech. Dig. Tech., pp. 27–29, Feb. 2006.

    無法下載圖示 全文公開日期 2021/01/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE