簡易檢索 / 詳目顯示

研究生: 蘇靖茹
Ching-Ju Su
論文名稱: 內部氫化製程對Mg-5Gd合金機械性質影響之研究
Effect of internal hydrogenation on the mechanical properties of Mg-5Gd alloy.
指導教授: 丘群
Chun Chiu
口試委員: 雷添壽
陳士勛
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: Mg-Gd合金內部氫化製程機械性質GdH2
外文關鍵詞: Mg-Gd alloy, Internal hydrogenation treatment, Mechanical properties, GdH2
相關次數: 點閱:303下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用 Mg-5Gd (wt.%) 合金進行內部氫化製程,內部氫化製程之處理溫度為 300 °C 及 325 °C ,吸氫壓力為 0.34 MPa,分別以 36、48 及 60 小時之吸氫時間,1 小時放氫時間來交叉分析,並對成分、金相結構、機械性質進行分析,探討內部氫化製程對於 Mg-5Gd 合金之影響。
    研究結果顯示,Mg (Gd) 合金經內部氫化製程後,其相組成由 ?-Mg 轉為 ?-Mg 及 GdH2 氫化物。Mg (Gd) 合金經過內部氫化製程後得到均勻散佈於鎂基底的 GdH2 氫化物,但原本固溶於基底中的 Gd 原子會與氫反應形 GdH2,使基底失去固溶強化效果且長時間熱處理有晶粒成長現象,導致硬度、抗拉強度低於處理前的合金。吸氫 36 小時之內部氫化製程參數下,其氫化物含量少且分佈不均勻,因基底固溶強化效果下降且有晶粒成長現象,導致硬度、抗拉強度下降。除 325-48 試片外,吸氫 48 小時之熱氫製程參數下,氫化物均勻散佈得到散佈強化效果,但失去固溶強化效果又加上晶粒成長現象,導致硬度及抗拉強度下降。本研究中最佳參數,於 325 ℃ 吸氫 48 小時之內部氫化製程參數下,氫化物均勻散佈導致散佈強化,但又失去固溶強化效果,且無晶粒成長現象,故其硬度、降伏強度與原材數值相差無幾。


    In this study, internal hydrogenation treatment was performed on Mg-5Gd (wt.%) alloy. Hydrogenation was carried out at 300, and 325 °C under 0.34 MPa of hydrogen for 36, 48, and 60 hours, followed by desorption for 1 hour. The effect of internal hydrogenation on composition, microstructure and mechanical properties of Mg-Gd alloy were studied.
    The results show that Mg(Gd) solid solution has transformed to ?-Mg and GdH2 hydride after internal hydrogenation. GdH2 hydride uniformly dispersed in the magnesium matrix is obtained. However, the Gd atoms originally dissolved in the Mg matrix reacts with the hydrogen to form GdH2. As the result, the solid solution strengthening effect is reduced. Moreover, grain growth of Mg after longtime heat treatment is observed. Compared to the alloy before treatment, the reduced solid solution strengthening effect and grain growth lead to lower hardness and tensile strength in the alloy after internal hydrogenation. After hydrogenation for 36 hours, the amount of hydride is low and its distribution is not uniform. Due to the reduction of effect of solid solution strengthening and the phenomenon of grain growth, the hardness and tensile strength decrease. Except the 325-48 specimen, uniformly-dispersed GdH2 hydride is observed and dispersion strengthening is obtained in the samples after hydrogenation for 48 hours. However, the loss of the effect of solid solution strengthening and the grain growth, resulting in a decrease of hardness and tensile strength.
    In this study, the optimal temperature and time for internal hydrogenation process are 325 °C and 48 hours, respectively. The effect of dispersion strengthening is canceled by the loss of solid solution strengthening. Plus, no grain growth is observed. Therefore, the hardness and yield strength are almost identical to those of the alloy before treatment.

    摘要 ………………………………………………………………………………… I Abstract ……………………………………………………………………………II 致謝 ………………………………………………………………………………III 目錄 ………………………………………………………………………………IV 圖目錄 ……………………………………………………………………………VII 表目錄 ……………………………………………………………………………IX 第一章 前言 …………………………………………………………………………1 第二章 文獻回顧 ……………………………………………………………………3 2.1 鎂與鎂合金之簡介 …………………………………………………………3 2.1.1 純鎂之特性 ………………………………………………………………3 2.1.2 鎂合金之特性 ……………………………………………………………3 2.1.3 鎂合金之編號 ……………………………………………………………4 2.1.4 合金元素添加之影響 ……………………………………………………6 2.1.5 Mg-Gd 合金 ……………………………………………………………8 2.2 鎂合金之強化方式 …………………………………………………………9 2.2.1 細晶粒尺寸強化 …………………………………………………………9 2.2.2 固溶強化 ………………………………………………………………11 2.2.3 析出強化 ………………………………………………………………12 2.2.4 散佈強化 ………………………………………………………………14 2.2.5 應變硬化 ………………………………………………………………14 2.3 熱氫製程 ……………………………………………………………………15 2.3.1 鈦合金之熱氫製程 ……………………………………………………15 2.3.2 鎂合金之熱氫製程 ……………………………………………………18 第三章 實驗步驟 …………………………………………………………………23 3.1 實驗流程 ……………………………………………………………………23 3.2 實驗材料 ……………………………………………………………………25 3.3 熔煉設備及試片製備 ………………………………………………………26 3.3.1 熔煉設備 ………………………………………………………………26 3.3.2 試片製備 ………………………………………………………………26 3.4 吸放氫加熱控制系統 ………………………………………………………27 3.5 分析儀器 ……………………………………………………………………28 3.5.1 光學顯微鏡 ……………………………………………………………28 3.5.2 場發掃描式電子顯微鏡 ………………………………………………29 3.5.3 X 光繞射分析儀 ………………………………………………………30 3.5.4 場發射穿透式電子顯微鏡 ……………………………………………31 3.5.5 場發射雙束型聚焦離子束顯微鏡 ……………………………………31 3.6 機械性質測試 ………………………………………………………………32 3.6.1 奈米壓痕試驗 …………………………………………………………32 3.6.2 洛氏硬度試驗 …………………………………………………………33 3.6.3 維克氏硬度試驗 ………………………………………………………34 3.6.4 拉伸試驗 ………………………………………………………………35 第四章 實驗結果與討論 …………………………………………………………37 4.1 微觀結構與成分分析 ………………………………………………………37 4.1.1 Mg-5Gd 原材分析 ……………………………………………………37 4.1.2 內部氫化製程後試片分析 ……………………………………………39 4.1.3 熱氦製程後試片分析 …………………………………………………50 4.2 Mg (Gd) 合金於不同製程試片之晶粒尺寸計算 …………………………53 4.3 內部氫化製程及熱氦製程試片之氫化物含量計算 ………………………54 4.4 機械性質分析 ………………………………………………………………57 4.4.1 硬度試驗 ………………………………………………………………57 4.4.2 拉伸試驗 ………………………………………………………………59 4.5 破斷面顯微結構分析 ………………………………………………………60 4.6 討論 …………………………………………………………………………70 第六章 結論 ………………………………………………………………………72 參考文獻 …………………………………………………………………………73

    [1] J. Chang, X. Guo, S. He, P. Fu, L. Peng, W. Ding, “Investigation of the Corrosion for Mg-XGd-3Y-0.4Zr (X= 6, 8, 10, 12 wt.%) Alloys in a Peak-Aged Condition”, Corrosion Science 50 (2008):166-177.
    [2] C. J. Chen, Q. D. Wang, D. D. Yin, “Thermal Properties of Mg-11Y-5Gd- 2Zn-0.5Zr (wt.%) Alloy”, Journal of Alloys and Compounds 487 (2009) :560-563.
    [3] X. Y. Fang, D. Q. Yi, J.F. Nie, X. J. Zhang, B. Wang, L. R. Xiao, “Effect of Zr, Mn and Sc Additions on the Grain Size of Mg-Gd Alloy”, Journal of Alloys and Compounds 470 (2009):311-316.
    [4] J. Fischer, M. H. Prosenc, M. Wolff, N. Hort, R. Willumeit, F. Feyerabend, “Interference of Magnesium Corrosion with Tetrazolium-Based Cytotoxicity Assays”, Acta Biomaterialia 6 (2010):1813-1823.
    [5] P. Qiuming, M. Ning , L. Hui, “Gadolinium Solubility and Precipitate Identification in Mg-Gd Binary Alloy”, Journal of Rare Element 30 (2012):1064.
    [6] Y. Yang, L. Peng, P. Fu, B. Hu, W. Ding, “Identification of NdH2 Particles in Solution-Treated Mg-2.5% Nd (wt.%) Alloy”, Journal of Alloys and Compounds 485 (2009):245-248.
    [7] Q. Peng, Y. Huang, J. Meng, Y. Li, K. U. Kainer, “Strain Induced GdH2 Precipitate in Mg-Gd Based Alloys”, Intermetallics 19 (2011):382-389.
    [8] M. Enomoto, Y. Ohata, H. Uchida, “Reaction Kinetics of H2, O2, and H2O with Rare Earths (Y, La, Ce, Pr, Nd, Gd, Tb, Dy, And Er) at 298 K”, Journal of Alloys and Compounds 580 (2013):S3-S5.
    [9] X. Shi, J. Zou, C. Liu, L. Cheng, D. Li, X. Zeng, W. Ding, “Study on Hydrogenation Behaviors of a Mg-13Y Alloy”, International Journal of Hydrogen Energy 39 (2014):8303-8310.
    [10] S. M. Zhu, J. F. Nie, M. A. Gibson, M. A. Easton, “On the Unexpected Formation of Rare Earth Hydrides in Magnesium-Rare Earth Casting Alloys”, Scripta Materialia 77 (2014):21-24.
    [11] Y. Huang, L. Yang, S. You, W. Gan, K. U. Kainer, N. Hort, “Unexpected Formation of Hydrides in Heavy Rare Earth Containing Magnesium Alloys”, Journal of Magnesium and Alloys 4 (2016):173-180.
    [12] M. K. Kulekci, “Magnesium and its Alloys Applications in Automotive Industry”, International Journal Advanced Manufacturing Technology 39 (2008):851-865.
    [13] J. Hirsch, T. A.Samman, “Superior Light Metals by Texture Engineering- Optimized Aluminum and Magnesium Alloys for Automotive Applications”, Acta Materialia 61 (2013):818-843.
    [14] J. Chen, L. Tan, X. Yu, I. P. Etim, M. Ibrahim, K. Yang, “Mechanical Properties of Magnesium Alloys for Medical Application-A Review”, Journal of the Mechanical Behavior of Biomedical Materials 87 (2018):68-79.
    [15] S. Jayasathyakawin, M. Ravichandran, N. Baskar, C. A. Chairman, R. Balasundaram, “Mechanical Properties and Applications of Magnesium Alloy-Review”, Materials Today: Proceedings 27 (2020):909-913.
    [16] C. Moosbrugger, “Engineering Properties of Magnesium Alloys”,.Asm International (2017).
    [17] M. M. Avedesian, H. Baker, “Asm Specialty Handbook:Magnesium and Magnesium Alloys”, Asm International (1999).
    [18] A. A. Luo, “Recent Magnesium Alloy Development for Elevated Temperature Applications”, International Materials Reviews 49 (2004):13-30.
    [19] J, Zheng, Q. Wang, Z. Jin, T. Peng, “Effect of Sm on the Microstructure, Mechanical Properties and Creep Behavior of Mg-0.5Zn-0.4Zr Based Alloys”, Materials Science and Engineering A 527 (2010):1677-1685.
    [20] F. Mert, C. Blawert, K. U. Kainer, N. Hort, “Influence of Cerium Additions on the Corrosion Behaviour of High Pressure Die Cast AM50 Alloy”, Corrosion Science 65 (2012):145-151.
    [21] N. Hort, Y. Huang, D. Fechner, M. Störmer, C. Blawert, F. Witte, C. Vogt, H. Drücker, R. Willumeit, K. U. Kainer, F. Feyerabend, “Magnesium Alloys as Implant Materials—Principles of Property Design for Mg-RE Alloys”, Acta Biomaterialia 6 (2010):1714-1725.
    [22] K. Luo, L. Zhang, G. Wu, W. Liu, W. Ding, ”Effect of Y and Gd Content on the Microstructure and Mechanical Properties of Mg–Y–RE Alloys”, Journal of Magnesium and Alloys 7 (2019):345-354.
    [23] S. Tekumalla, S. Seetharaman, A. Almajid, M. Gupta, “Mechanical Properties of Magnesium-Rare Earth Alloy Systems-A Review”, Metals 5 (2015):1-39.
    [24] M. Vlcek, J. Cı ́Zek, F. Lukac, P. Hruska, B. Smola, I. S. ́Kova, H. Kudrnova, P. Minarik, T. Kmjec, T. Vlasak, “Hydrogen Absorption in Mg-Gd Alloy”, International Journal of Hydrogen Energy 42 (2017):22598-22604.
    [25] J. Liu, D. Bian, Y. Zheng, X. Chu, Y. Lin, M. Wang, Z. Lin, M. Li, Y. Zhang, S. Guan, “Comparative in Vitro Study on Binary Mg-RE (Sc,Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,Yb and Lu) Alloy Systems”, Acta Biomaterialia 102 (2020):508-528.
    [26] L. Gao, R. S. Chen, E. H. Han, “Effects of Rare-Earth Elements Gd and Y on the Solid Solution Strengthening of Mg Alloys”, Journal of Alloys and Compounds 481 (2009):379-384.
    [27] W. Yuan, S. K. Panigrahi, J. Q. Su, R. S. Mishra, “Influence of Grain Size and Texture on Hall–Petch Relationship for a Magnesium Alloy”, Scripta Materialia 65 (2011):994-997.
    [28] Y. Xu, F. Gensch, Z. Ren, K. U. Kainer, N. Hort, “Effects of Gd Solutes on Hardness and Yield Strength of Mg Alloys”, Progress in Natural Science: Materials International 28 (2018):724-730.
    [29] B. Q. Shi, R. S. Chena, W. Ke, “Solid Solution Strengthening in Polycrystals of Mg-Sn Binary Alloys”, Journal of Alloys and Compounds 509 (2011):3357-3362.
    [30] C. C. Kammerer, N. S. Kulkarni, R. J. Warmack, Y. H. Sohn, “Interdiffusion and Impurity Diffusion in Polycrystalline Mg Solid Solution with Al or Zn”, Journal of Alloys and Compounds 617 (2014):968-974.
    [31] A. Kula, X. Jla, R. K. Mishra, M. Niewczas, “Mechanical Properties of Mg-Gd and Mg-Y Solid Solutions”, The Minerals, Metals & Materials Society and Asm International 47 (2016):3333-3342.
    [32] S. A. Alsubaie, P. Bazarnik, M. Lewandowska, Y. Huang, T. G. Langdon, “Evolution of Microstructure and Hardness in an AZ80 Magnesium Alloy Processed by High-Pressure Torsion”, Journal of Materials Research and Technology 5 (2016):152-158.
    [33] D. Nagarajan, X. Ren, C. H. Cáceres, “Anelastic Behavior of Mg-Al and Mg-Zn Solid Solutions”, Materials Science & Engineering A 696 (2017):387-392.
    [34] J. Tan, Y. H. Sun, H. B. Xie, B. Z. Sun, Y. Qi, “Atomic-Resolution Investigation of Y-Rich Solid Solution with an Invariable Orientation in Mg-Y Binary Alloy”, Journal of Alloys and Compounds 766 (2018):716-720.
    [35] T. W. Cain, C. F. Glover, J. R. Scully, “The Corrosion of Solid Solution Mg-Sn Binary Alloys in NaCl Solutions”, Electrochimica Acta 297 (2019):564-575
    [36] A. J. Ardell, “Precipitation Hardening”, Metallurgical Transactions A 16 (1985):2131-2165.
    [37] J. F. Nie, “Precipitation and Hardening in Magnesium Alloys”, Metallurgical and Materials Transactions A 43 (2012):3891-3939.
    [38] H. Fan, A. H. W. Ngan, K. Gan, J. A. El-Awady, “Origin of Double-Peak Precipitation Hardening in Metallic Alloys”, International Journal of Plasticity 111 (2018):152-167.
    [39] L. Zhong, Y. Wang, M. Gong, X. Zheng, J. Peng, “Effects of Precipitates and its Interface on Thermal Conductivity of Mg-12Gd Alloy During Aging Treatment”, Materials Characterization 138 (2018):284-288.
    [40] S. F. Hassan, M. Gupta, “Enhancing Physical and Mechanical Properties of Mg Using Nanosized Al2O3 Particulates as Reinforcement”, Metallurgical and Materials Transactions A 36 (2005):2253-2258.
    [41] Y. X. Ping, “Research Status on Strengthening Mechanism of Particle-Reinforced Metal Matrix Composites”, Journal of Materials Engineering 46 (2018):28-37.
    [42] R. Abbaschian, R. E. R. Hill, “Physical Metallurgy Principles” (2008).
    [43] A. Lixandru, I. Poenaru, K. Güth, R. Gauß, O. Gutfleisch, “A Systematic Study of HDDR Processing Conditions for the Recycling of End-of-Life Nd-Fe-B Magnets”, Journal of Alloys and Compounds 724 (2017):51-61.
    [44] I. R. Harris, P. J. Mcguiness, “Hydrogen-its Use in the Processing of NdFeB-Type Magnets”, Journal of the Less-Common Metals 172-174 (1991):1273-1284.
    [45] T. Takeshita, “Some Applications of Hydrogenation-Decomposition-Desorption- Recombination (HDDR) and Hydrogen-Decrepitation (HD) in Metals Processing”, Journal of Alloys and Compounds 231 (1995):51-59.
    [46] A. Aydınlı, B. Aktekin, T. Öztürk, “Size Reduction in Mg Rich Intermetallics Via Hydrogen Decrepitation”, Journal of Alloys and Compounds 645 (2015):S27-S31.
    [47] G. M. Bilgin, Z. Esen, Ş. K. Akın, A. F. Dericioglu, “Optimization of the Mechanical Properties of Ti-6Al-4V Alloy Fabricated Byselective Laser Melting Using Thermohydrogen Processes”, Materials Science & Engineering A 700 (2017):574-582.
    [48] O. N. Senkov?, F. H. Froes, “Thermohydrogen Processing of Titanium Alloys”, International Journal of Hydrogen Energy 24 (1999):565-576.
    [49] V. K. Nosov, A. V. Ovchinnikov, Y. Y. Shchugorev, “Applications of Hydrogen Plasticizing of Titanium Alloys”, Metal Science and Heat Treatment 50 (2008):378-382.
    [50] A. Guitar, G. Vigna, M. I. Luppo, “Microstructure and Tensile Properties after Thermohydrogen Processing of Ti–6Al–4V”, Journal of the Mechanical Behavior of Biomedical Materials 2 (2009):156-163.
    [51] F. H. Froes, O. N. Senkov, J Iqazi, “Hydrogen as a Temporary Alloying Element in Titanium Alloys:Thermohydrogen Processing [J]” International Materials Reviews 49 (2004):227-245.
    [52] O. N. Senkov, F. H. Froes, “Thermohydrogen Processing of Titanium Alloys [J]“, International Journal of Hydrogen Energy 24 (1999):565-576.
    [53] O. N. Senkov?, F. H. Froes, “Thermohydrogen Processing of Titanium Alloys”, International Journal of Hydrogen Energy 24 (1999):565-576.
    [54] 沈家傑、王仲敏、陳欣鴻。氫化熱處理對 Ti6Al4V 合金奈米晶粒細化研究。行政院國家科學委員會專題研究成果報告 (編號:NSC99-2221-E-155-091、NSC100-2221-E-155-039-MY2)。
    [55] W. R. Kerr, R. R. Smith, M. E. Rosenblum, F.J. Gurney, Y.R. Mahajan, L.R. Bidwell, “Hydrogen as an Alloying Element in Titanium (Hydrovac)”, Science and Technology (1980):2477-2486.
    [56] Y. Y. Zong, S. H. Huang, B. Guo, D. B. Shan, “In Situ Study of Phase Transformations in Ti−6Al−4V−XH Alloys”, Transactions of Nonferrous Metals. Society 25 (2015):2901-2911.
    [57] M. Li?, W. Zhang, “Effect of Hydrogenation Content on High Temperature Deformation Behavior of Ti-6Al-4V Alloy in Isothermal Compression”, International Journal of Hydrogen Energy 33 (2008):2714-2720.
    [58] M. Li, Y. Lin, “Grain Refinement in Near Alpha Ti60 Titanium Alloy by the Thermohydrogenation Treatment”, International Journal of Hydrogen Energy 32 (2007):626-629.
    [59] D. Eliezer, N. Eliaz, O. N. Senkov, F. H. Froes, “Positive Effects of Hydrogen in Metals”, Materials Science and Engineering A 280 (2000):220-224.
    [60] Y. Sun, C. Shen, Q. Lai, W. Liu, D. W. Wang, K. F. A. Zinsou, “Tailoring Magnesium Based Materials for Hydrogen Storage Through Synthesis-Current State of the Art”, Energy Storage Materials 10 (2018) 168-198.
    [61] A. Züttel, “Materials for Hydrogen Storage”, Materials Today 6 (2003): 24-33
    [62] L. Hu, Y. Wu, Y. Yuan, H. Wang, “Microstructure Nanocrystallization of a Mg-3 wt.% Al-1 wt.% Zn Alloy by Mechanically Assisted Hydriding-Dehydriding”, Materials Letters 62 (2008):2984-2987.
    [63] S. H. Fei, F. Wa, Y. Z. Xing, F. W. Bin, “Preparation and Microstructure of Nanocomposite Mg-3Al-Zn Alloy by HDDR Combined with Ball Milling”, Advanced Materials Research 264-265 (2011):496-501.
    [64] Y. Wang, X. Q. Zeng, J. X. Zou, D. J. Li, X. M. Wu, W. J. Ding, “Microstructure Characterization and Hydrogen Desorption Behaviors of Mg-Al-H Powders Prepared by Reactive Milling in Hydrogen”, Transactions of Nonferrous Metals Society of China 23 (2013):3112-3118.
    [65] H. Takamura, T. Miyashita, A. Kamegawa, M. Okada, “Grain Size Refinement in Mg-Al-Based Alloy by Hydrogen Treatment”, Journal of Alloys and Compounds 356-357 (2003):804-808.
    [66] T. Miyazawa, Y. Kobayashi, A. Kamegawa, H. Takamura, M. Okada, “Grain Size Refinements of Mg Alloys (AZ61, AZ91, ZK60) by HDDR Treatment”, Materials Transactions, 45 (2004):384-387.
    [67] K. Fu, G. Li, J. Li, Y. Liu, W. Tian, J. Zheng, X. Li, “Study on the Thermodynamics of the Gadolinium-Hydrogen Binary System (H/Gd=0.0-2.0) and Implications to Metallic Gadolinium Purification”, Journal of Alloys and Compounds 673 (2016):131-137.
    [68] K. Goc, W. Prendota, J. Przewoznik, Ł. Gondek, Cz Kapusta, A. Radziszewska, K. Mineo, A. Takasaki, “Magnetron Sputtering as a Method for Introducing Catalytic Elements to Magnesium Hydride”, International Journal of Hydrogen Energy 43 (2018):20836-20842.
    [69] R. Lapovok, E. Zolotoyabko, A. Berner, V. Skripnyuk, E. Lakin, N. Larianovsky, C. Xu, E. Rabkin, “Hydrogenation Effect on Microstructure and Mechanical Properties of Mg-Gd-Y-Zn-Zr Alloys”, Materials Science & Engineering A 719 (2018):171-177.
    [70] “ASTM E8/E8M-09 Standard Test Methods for Tension Testing of Metallic Materials”, ASTM international (2011).
    [71] Y. Chino, D. Nishihara, T. Ueda, M. Mabuchi, “Effects of Hydrogen on the Mechanical Properties of Pure Magnesium”, Materials Transactions 52 (2011):1123-1126.
    [72] A. Atrens, N. Winzer, G. Song, W. Dietzel, C. Blawert, “Stress Corrosion Cracking and Hydrogen Diffusion in Magnesium”, Advanced Engineering Materials 8 (2006):749-751.
    [73] A. Matin, F. F. Saniee, H. R. Abedi, “Microstructure and Mechanical Properties of Mg/SiC and AZ80/SiC Nano-Composites Fabricated Through Stir Casting Method”, Materials Science & Engineering A 625 (2015):81-88.
    [74] M. H. Korayem, R. Mahmudi, W. J. Poole, “Enhanced Properties of Mg-Based Nano-Composites Reinforced with Al2O3 Nano-Particles”, Materials Science and Engineering A 519 (2009):198-203.
    [75] J. E. Bonnet, J. N. Daou, “Rare-Earth Dihydride Compounds-Lattice Thermal Expansion and Investigation of The Thermal Dissociation”, Journal of Applied Physics 4 (1977):964.
    [76] S.F. Hassan, M. Gupta, “Development of High Performance Magnesium Nano-Composites Using Nano-Al2O3 as Reinforcement” Materials Science and Engineering A 392 (2005):163-168.
    [77] S. S. Zhou, K. K. Deng, J. C. Li, S. J. Shang, W. Liang, J. F. Fan, “Effects of Volume Ratio on the Microstructure and Mechanical Properties of Particle Reinforced Magnesium Matrix Composite”, Materials and Design 63 (2014):672-677.

    無法下載圖示 全文公開日期 2025/08/19 (校內網路)
    全文公開日期 2030/08/19 (校外網路)
    全文公開日期 2030/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE