簡易檢索 / 詳目顯示

研究生: Kassie Nigus Shitaw
Kassie Nigus Shitaw
論文名稱: 臨場氣相分析探討無陽極鋰金屬電池之介面反應與其副反應之抑制方法開發
Interfacial Chemistries by In Situ Gas Analysis and Mitigating Side Reactions in Anode-free Lithium Metal Battery
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: Bing-Joe Hwang
Bing-Joe Hwang
Wei-Nien Su
Wei-Nien Su
She-Huang Wu
She-Huang Wu
Chun-Chen Yang
Chun-Chen Yang
Nae-Lih Wu
Nae-Lih Wu
Hsisheng Teng
Hsisheng Teng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 210
中文關鍵詞: 無陽極鋰金屬電池界面效應氣體逸出in-situ電化學質譜;成核屏障成核屏障死鋰電解液配方熱循環雙鹽電解液
外文關鍵詞: anode-free battery, interfacial phenomena, gas evolution, in-situ electrochemical mass spectroscopy, nucleation barrier, dead Li, SEI vs. electrolyte formulation, hot cycling, dual-salt electrolyte
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要

由於鋰金屬負極的高能量密度和較低的氧化還原電位(-3.04 V vs. SHE),鋰金屬電池(LMB)是一種很有前途的下一代電池。其與有機液體電解質具有高度反應性,同時也導致安全問題、鋰枝晶沉積、死鋰形成、體積膨脹和循環穩定性差。所有這些問題都限制了鋰金屬電池的實際應用。因此,由於鋰金屬負極的反應性,使用鋰金屬電池製程來研究可充電電池正極和正極表面的界面反應是相當具有挑戰性的。發展一適當方法,了解鋰金屬電池中的界面現象為先決條件,以增強界面穩定性和提高可充電鋰金屬電池循環壽命的。
首先,我們通過將無陽極鋰金屬電池裝置與原位氣相色譜質譜相結合,成功地解耦並揭開了兩個電極的界面反應的神秘面紗。電解質1 M LiPF6 EC/DEC和 1 M LiPF6 EC/EMC (1:1 v/v)用於比較 Li/NMC111 和 Cu/NMC111 電池中的界面反應。由於SEI形成過程中銅表面的界面反應,得以了解Cu/NMC111電池初始狀態下氣體CO2、CO和C2H4的變化,而整個循環中高電壓下的CO2和CO氣體與在陰極進行化學或電解液氧化的電化學有關。然而,Li/NMC111電池陽極或陰極側的 CO2、CO、O2、C2H4、C2H6 和 POF3 副產物混合在一起,表明界面反應的解耦很困難。已經可以確定電解質對無陽極鋰金屬電池界面處的鋰金屬的穩定性明顯地影響了氣體的逸出。
在第二項工作中,使用亞磷酸三(三甲基甲矽烷基)( tris(trimethylsilyl) phosphite) (TMSP)添加劑的熱循環方案和電解質配方對沉積的鋰、非活性鋰(死鋰和用於SEI形成的鋰),且透過聚焦離子束掃描電子顯微鏡 (FIB-SEM)、滴定氣相色譜 (TGC)、原位氣相色譜質譜(原位 GC-MS) 和X 射線光電子能譜 (XPS) 分別有系統地研究了SEI的形成。電解液1 M LiPF6 EC/DEC (1:1) 在熱循環及TMSP 添加劑的輔助下的將成核的阻礙從76.2 mV降低到 21.7 mV,將沉積鋰的緻密性從31.5%提高到41.3%,並減少了非活性鋰的量,從45.18%到10.86% 和SEI中的鋰分別從31.04%至12.49%。由於協同效應,Cu/NMC111 電池在0.2 mA cm-2 下循環 60次後可實現 98.4%的平均庫侖效率和 51.2% 的容量保持率,而在 25°C 下使用 EC/DEC 的電池在15 次循環後仍提供 92.8% 的平均庫倫效率和40.4%的容量保持率。因此,碳酸鋰電解質中 LiPF6 鹽的濕度和溫度敏感性,以及不良鈍化層的形成會成為影響提高無陽極鋰金屬電池循環穩定性的問題。
最後,由LiDFOB和 LiPO2F2在EC/DEC (1:1 v/v) 中混合物組成的功能性雙鹽電解質的開發,已解決鋰金屬電池和無陽極鋰金屬電池的界面不穩定性。在此,設計了 EC/DEC中的雙鹽 (0.8LDF/0.2LPOF),並使用約1%的TMSP 添加劑來形成電解質的離子電導率並在循環的過程中穩定這些鹽類。值得注意的是,由於在形成循環期間 LDF 和 LPOF 鹽的氧化還原分解,所開發的電解質可以在陰極和銅電流收集體界面形成堅固的CEI和SEI層。含0.8LDF/0.2LPOF 或 0.8LDF/0.2LPOF + 1% TMSP的Cu/NMC111 電池中沉積的Li較顯著緻密且均勻。因此,在 25°C和0.2 mA cm-2電流密度下循環 60次後,含0.8LDF /0.2LPOF電解質的電池的平均庫倫效率為97.97%,容量保持率為 49.57%,而含 0.8LDF /0.2LPOF +在相同的循環次數和循環條件下,1% TMSP 實現了 98.09% 的平均庫倫效率和61.55%的容量保持率。
總而來說,我們使用無陽極的Cu/NMC111裝置作為工具來深入研究無陽極鋰金屬電池中的界面反應和整體界面現象,這有助於設計合適的電解質以提高鋰金屬電池的循環穩定性。


Abstract

The lithium (Li)-metal battery (LMB) is a promising next generation battery due to the high energy density and lower redox potential (-3.04 V vs. SHE) of the Li-metal anode. However, the Li-metal anode is highly reactive with organic liquid electrolytes, and causes safety concerns, dendritic Li deposition, dead Li formation, volume expansion, and poor cycling stability. All these issues limit the practical applications of the LMBs. Therefore, due to the reactive nature of Li-metal anode, it is challenging to use Li-metal batteries (LMBs) protocol to investigate the interfacial reactions at the anode and cathode surfaces of rechargeable batteries. Understanding of the interfacial phenomena in the LMBs is a prerequisite to develop an appropriate strategy for the enhancement of interface stability and boosting cycling life of the rechargeable LMBs.
In the first work, we has been successfully decoupled and demystified the interfacial reactions at the two electrodes by combining the anode-free Li-metal battery (AFLMBs) configuration with gas chromatography mass spectroscopy (in situ GC-MS).1 The 1 M LiPF6 in EC/DEC and 1 M LiPF6 EC/EMC (1:1 v/v) electrolytes were used to compare the interfacial reactions in the Li/NMC111 and Cu/NMC111 cells. It is demystified that the evolution of CO2, CO and C2H4 gases at the initial staging state of Cu/NMC111 cell is due to interfacial reactions at Cu surface during SEI formation, while the CO2 and CO gases at high voltage in the entire cycle is associated with chemical and/or electrochemical electrolyte oxidation at the cathode. However, the CO2, CO, O2, C2H4, C2H6 and POF3 by-products from anode or cathode sides in the Li/NMC111 cell are mixed up, indicating decoupling of interfacial reactions is difficult. It has been identified that the stability of electrolyte against the Li metal at the interface of AFLMBs greatly influence the evolution of gases.
In the second work, hot cycling protocol and electrolyte formulation using tris(trimethylsilyl) phosphite (TMSP) additive effects on the interfacial phenomena of compactness of deposited Li, inactive Li (dead Li and Li for SEI formation “SEI-Li”), electrolyte decomposition, and SEI formation are systematically investigated by focused ion beam scanning electron microscope (FIB-SEM), titration gas chromatography (TGC), in-situ gas chromatography mass spectroscopy (in-situ GC-MS), and X-ray photoelectron spectroscopy (XPS), respectively. The synergy of hot cycling and TMSP additive in 1 M LiPF6 EC/DEC (1:1) electrolyte lowers the nucleation barrier from 76.2 mV to 21.7 mV, increases the compactness of deposited Li from 31.5% to 41.3%, and reduces inactive Li from 45.18% to 10.86% and SEI-Li from 31.04% to 12.49%, respectively. Due to the synergetic effects, Cu/NMC111 cell attains average coulombic efficiency (avg. CE) of 98.4% and capacity retention (CR) of 51.2% after 60 cycles at 0.2 mA cm-2, while the cell with EC/DEC at 25 °C offers avg. CE of 92.8% with CR of 40.4% after 15 cycles. Here, the moisture and temperature sensitivity of the LiPF6 salt in the carbonate electrolyte and poor passivation formation are problematic for the enhancement of the cycling stability of the AFLMBs.
In the final work, the interface instability of LMBs and AFLMBs, in particular, has been resolved by developing a functional dual-salt electrolyte consisting a mixture of LiDFOB and LiPO2F2 in a mixture of EC/DEC (1:1 v/v). Here, the dual-salt (0.8LDF/0.2LPOF) in EC/DEC was designed and about 1% TMSP additive was used to form ionic conductivity of the electrolyte and stabilize the salts during cycling. Remarkably, the developed electrolyte can form robust CEI and SEI layers at the cathode and Cu current collector interfaces due to the prior redox decomposition of LDF and LPOF salts during formation cycles. The deposited Li in the Cu/NMC111 cell containing 0.8LDF/0.2LPOF or 0.8LDF/0.2LPOF + 1% TMSP is significantly compacted and uniform. Therefore, the cell with 0.8LDF/0.2LPOF electrolyte attained an avg. CE of 97.97% with CR of 49.57% after 60 cycles at 25 °C and 0.2 mA cm-2 current density, while the cell with 0.8LDF/0.2LPOF + 1% TMSP achieved avg. CE of 98.09% and CR of 61.55% after the same cycle number and cycling conditions.
In general, we used anode-free Cu/NMC111 configuration as a tool to intensively investigate the interfacial reactions and overall interface phenomena in the AFLMBs, which helps to design a suitable electrolyte for boosting the cycling stability of the LMBs in general.

Table of Contents 摘要 i Abstract iii Acknowledgment vii Table of Contents ix Index of Figures xiii Index of Tables xxiii Index of Schemes xxv Index of Units and Abbreviations xxvii Chapter 1: General Background 1 1.1 Energy Sources and Storage Systems 1 1.2 Energy Storage Systems 2 1.3 Batteries as Electrochemical Energy Storage System 3 Chapter 2: Lithium Metal Battery as Electrochemical Energy Storage System 7 2.1 Lithium Metal Battery and its Components 7 2.1.1 Cathode Materials 8 2.1.2 Electrolytes 10 2.1.3 Electrolyte Additives 13 2.1.4 Anode Materials 15 2.2 Lithium Metal Battery Challenges 15 2.2.1 Li Dendrite Growth and Dead Li Formation 17 2.2.2 High Volume Change 20 2.2.3 Instability of SEI Layers 20 2.2.4 Interfacial Reactions 21 2.2.4.1 Interfacial Side Reactions at the Cathode Side 22 2.2.4.2 Interfacial Side Reactions at the Anode Side 24 2.3 Approaches for Suppression of Interfacial Side Reactions 26 2.3.1 Artificial SEI Engineering on the Current Collectors 27 2.3.2 Electrolyte Engineering 30 2.3.2.1 Electrolyte Formulation Using Additives 30 2.4 Anode free Li-metal Battery as a Tool to Study Interfacial Reactions 35 2.5 Anode free Li-metal Battery as a Tool to Develop Carbonate-based Electrolytes 41 2.6 Motivation and Objectives of the study 46 2.6.1 Motivation of the Study 46 2.6.2 Objectives of the Study 47 Chapter 3: Experimental Section and Characterization 49 3.1 Chemicals and Reagents 49 3.2 Cathode Material Preparation 50 3.3 Anode Current Collector Preparation 50 3.4 Electrolyte Preparation 50 3.5 Online Electrochemical Mass Spectrometry (OEMS) Designing 52 3.6 Physicochemical Properties 55 3.7 Electrochemical Measurements 56 3.8 Morphological Evolution of in situ Deposited Li 56 3.9 SEI Components Characterization 57 3.10 Dead Li Quantification 57 Chapter 4: Decoupling of Interfacial Reactions at Anode and Cathode by Combining Online Electrochemical Mass Spectroscopy with Anode-free Li-metal Battery 59 4.1 Introduction 59 4.2 Results and Discussion 61 4.2.1 Gas Formation Analysis of Cu/NMC111 Full-cells at 25 °C 61 4.2.2 Gas Formation Analysis of Cu/NMC111 Full-cells at 40 and 60 °C 70 4.2.3 Gas Formation Analysis During Electrochemical Reduction of EC/DEC and EC/EMC Electrolytes 73 4.2.4 Gas Formation Analysis of Li/NMC111 Half-cells at 25 °C 76 4.2.5 Surface Composition Characterization 81 4.3 Summary 84 Chapter 5: Evolution of Interfacial Phenomena Induced by Electrolyte Formulation and Hot Cycling in Anode-free Li-metal Battery 85 5.1 Introduction 85 5.2 Results and Discussion 86 5.2.1 Electrolyte Optimization 86 5.2.2 Interfacial Phenomena 89 5.2.2(a) Evolution of Early Stage Li Nucleation 90 5.2.2(b) Compactness of In Situ Deposited Li 93 5.2.2(c) Evolution of Inactive Lithium 98 5.2.2(d) Electrolyte Decomposition 101 5.2.2(e) Evolution of SEI Compositions 105 5.2.3 Electrochemical Performance 110 5.2.3(a) Li/Cu half-cells Performance 110 5.2.3(b) Cu/NMC111 Anode-free full-cells Performance 111 5.3 Summary 116 Chapter 6: Stabilizing the Electrode/electrolyte Interfaces Enabled by Functional Dual-salt Electrolyte for Long Cycling of Anode-free Li-metal Battery 117 6.1 Introduction 117 6.2 Results and Discussion 118 6.2.1 Optimization of Dual-salt electrolytes 118 6.2.2 Li/Cu half-cells Performance 124 6.2.3 Cu/NMC111 full-cells Performance 126 6.2.4 Origins of Irreversible Coulombic Efficiency 129 6.2.5 Surface Morphology Characterization 133 6.2.6 Evolution of Passivation Layer Formation 137 6.3 Summary 147 Chapter 7: Conclusions and Future Outlooks 149 7.1 Conclusion 149 7.2 Future Outlooks 151 References 153 List of Publication 177

References:
1. Shitaw, K. N.; Yang, S.-C.; Jiang, S.-K.; Huang, C.-J.; Sahalie, N. A.; Nikodimos, Y.; Weldeyohannes, H. H.; Wang, C.-H.; Wu, S.-H.; Su, W.-N.; Hwang, B. J., Decoupling Interfacial Reactions at Anode and Cathode by Combining Online Electrochemical Mass Spectroscopy with Anode-Free Li-Metal Battery. Adv. Funct. materials 2021, 31 (6), 2006951.
2. Mukrimin Sevket, G.; Yalcin, T., Classification and assessment of energy storage systems. Renewable and Sustainable Energy Reviews 2017, 75, 1187-1197.
3. Ould Amrouche, S.; Rekioua, D.; Rekioua, T.; Bacha, S., Overview of energy storage in renewable energy systems. International Journal of Hydrogen Energy 2016, 41 (45), 20914-20927.
4. Hosseini, S. E.; Wahid, M. A., Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews 2016, 57, 850-866.
5. Guney, M. S.; Tepe, Y., Classification and assessment of energy storage systems. Renewable and Sustainable Energy Reviews 2017, 75, 1187-1197.
6. Kordesch, K.; Taucher-Mautner, W., HISTORY | Primary Batteries. In Encyclopedia of Electrochemical Power Sources, Garche, J., Ed. Elsevier: Amsterdam, 2009; pp 555-564.
7. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P., Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials 1998, 10 (10), 725-763.
8. May, G. J.; Davidson, A.; Monahov, B., Lead batteries for utility energy storage: A review. Journal of Energy Storage 2018, 15, 145-157.
9. Chen, S.; Wen, K.; Fan, J.; Bando, Y.; Golberg, D., Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. Journal of Materials Chemistry A 2018, 6 (25), 11631-11663.
10. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
11. Chen, Z.; Amine, R.; Ma, Z.-F.; Amine, K., Interfacial reactions in lithium batteries. Journal of Physics D: Applied Physics 2017, 50 (30), 303001.
12. Bhatt, M. D.; O'Dwyer, C., Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical Chemistry Chemical Physics 2015, 17 (7), 4799-4844.
13. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology 2017, 12 (3), 194-206.
14. Ye, H.; Xin, S.; Yin, Y.-X.; Li, J.-Y.; Guo, Y.-G.; Wan, L.-J., Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. Journal of the American Chemical Society 2017, 139 (16), 5916-5922.
15. Liu, B. Z., J.-G.; Xu., W., Advancing Lithium Metal Batteries. Joule 2018, 2 (5), 833 - 845.
16. Li, Z.; Huang, J.; Yann Liaw, B.; Metzler, V.; Zhang, J., A review of lithium deposition in lithium-ion and lithium metal secondary batteries. Journal of Power Sources 2014, 254, 168-182.
17. Aurbach, D.; Cohen, Y., The Application of Atomic Force Microscopy for the Study of Li Deposition Processes. Journal of The Electrochemical Society 1996, 143 (11), 3525-3532.
18. Puthusseri, D.; Parmananda, M.; Mukherjee, P. P.; Pol, V. G., Probing the Thermal Safety of Li Metal Batteries. Journal of The Electrochemical Society 2020, 167, 120513.
19. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J., Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science 2016, 9 (6), 1955-1988.
20. Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C.; Rodriguez-Martínez, L. M.; Armand, M., Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angewandte Chemie International Edition 2018, 57 (46), 15002-15027.
21. Amit, M.; Akansha, M.; Soumen, B.; Shweta, J. M.; Nagaraj, P. S.; Shyam, S. S.; Mallikarjuna, N. N.; Tejraj, M. A., Electrode materials for lithium-ion batteries. Materials Science for Energy Technologies 2018, 1 (2), 182-187.
22. Di Lecce, D.; Verrelli, R.; Hassoun, J., Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations. Green Chemistry 2017, 19 (15), 3442-3467.
23. Tasaki, K., Solvent Decompositions and Physical Properties of Decomposition Compounds in Li-Ion Battery Electrolytes Studied by DFT Calculations and Molecular Dynamics Simulations. Journl of Physical Chemistry B 2005, 109 (7), 2920-2933.
24. Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials 2018, 4 (1), 15.
25. Phadke, S.; Cao, M.; Anouti, M., Approaches to Electrolyte Solvent Selection for Poly-Anthraquinone Sulfide Organic Electrode Material. ChemSusChem 2018, 11 (5), 965-974.
26. Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H.-K., Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries. Chemistry—A European Journal 2011, 17 (51), 14326-14346.
27. Appetecchi, G. B., Safer electrolyte components for rechargeable batteries %J Physical Sciences Reviews. 2019, 4 (3).
28. Liu, Z.; Chai, J.; Xu, G.; Wang, Q.; Cui, G., Functional lithium borate salts and their potential application in high performance lithium batteries. Coordination Chemistry Reviews 2015, 292, 56-73.
29. Younesi, R.; Veith, G. M.; Johansson, P.; Edström, K.; Vegge, T., Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy & Environmental Science 2015, 8 (7), 1905-1922.
30. Mosallanejad, B., Phthalimide Derivatives: New Promising Additives for Functional Electrolyte in Lithium-ion Batteries. Chemical Methodologies 3 (2), 261-275.
31. Qiao, L.; Cui, Z.; Chen, B.; Xu, G.; Zhang, Z.; Ma, J.; Du, H.; Liu, X.; Huang, S.; Tang, K.; Dong, S.; Zhou, X.; Cui, G., A promising bulky anion based lithium borate salt for lithium metal batteries. Chemical Science 2018, 9 (14), 3451-3458.
32. Dong, Y.; Young, B. T.; Zhang, Y.; Yoon, T.; Heskett, D. R.; Hu, Y.; Lucht, B. L., Effect of Lithium Borate Additives on Cathode Film Formation in LiNi0.5Mn1.5O4/Li Cells. ACS Applied Materials & Interfaces 2017, 9 (24), 20467-20475.
33. Yang, G.; Shi, J.; Shen, C.; Wang, S.; Xia, L.; Hu, H.; Luo, H.; Xia, Y.; Liu, Z., Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO2F2) additive. RSC Advances 2017, 7 (42), 26052-26059.
34. Dong, Q.; Guo, F.; Cheng, Z.; Mao, Y.; Huang, R.; Li, F.; Dong, H.; Zhang, Q.; Li, W.; Chen, H.; Luo, Z.; Shen, Y.; Wu, X.; Chen, L., Insights into the Dual Role of Lithium Difluoro(oxalato)borate Additive in Improving the Electrochemical Performance of NMC811||Graphite Cells. ACS Applied Energy Materials 2020, 3 (1), 695-704.
35. Shen, X.; Zhang, X.-Q.; Ding, F.; Huang, J.-Q.; Xu, R.; Chen, X.; Yan, C.; Su, F.-Y.; Chen, C.-M.; Liu, X.; Zhang, Q., Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect. Energy Material Advances 2021, 2021, 1205324.
36. Lei, W.; Ziyue, Z.; Xiao, Y.; Feng, H.; Lei, W.; Wenbin, L.; Ji, L.; Shi Xue, D., Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Materials 2018, 14, 22-48.
37. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 513-537.
38. Li, Q.; Pan, H.; Li, W.; Wang, Y.; Wang, J.; Zheng, J.; Yu, X.; Li, H.; Chen, L., Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. ACS Energy Letters 2018, 3 (9), 2259-2266.
39. Ghazi, Z. A.; Sun, Z.; Sun, C.; Qi, F.; An, B.; Li, F.; Cheng, H.-M., Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. Small 2019, 15 (32), 1900687.
40. Yang, H.; Guo, C.; Naveed, A.; Lei, J.; Yang, J.; Nuli, Y.; Wang, J., Recent progress and perspective on lithium metal anode protection. Energy Storage Materials 2018, 14, 199-221.
41. Wu, F.; Maier, J.; Yu, Y., Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews 2020, 49 (5), 1569-1614.
42. Li, Z.; Xu, N.; Sha, Y.; Ji, J.; Liu, T.; Yan, L.; He, Y.; Zheng, J.; Ling, M.; Lu, Y.; Liang, C., Chitosan oligosaccharide derived polar host for lithium deposition in lithium metal batteries. Sustainable Materials and Technologies 2020, 24, e00158.
43. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnology 2017, 12, 194.
44. Guo, Y.; Li, H.; Zhai, T., Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. Advanced Materials 2017, 29 (29), 1700007.
45. Chen, K.-H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P., Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. Journal of Materials Chemistry A 2017, 5 (23), 11671-11681.
46. Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M.; Mullins, C. B., Electrode Degradation in Lithium-Ion Batteries. ACS Nano 2020, 14 (2), 1243-1295.
47. Gunnarsdóttir, A. B.; Amanchukwu, C. V.; Menkin, S.; Grey, C. P., Noninvasive In Situ NMR Study of “Dead Lithium” Formation and Lithium Corrosion in Full-Cell Lithium Metal Batteries. Journal of the American Chemical Society 2020, 142 (49), 20814-20827.
48. Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M.-H.; Alvarado, J.; Schroeder, M. A.; Yang, Y.; Lu, B.; Williams, N.; Ceja, M.; Yang, L.; Cai, M.; Gu, J.; Xu, K.; Wang, X.; Meng, Y. S., Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572 (7770), 511-515.
49. Zhang, Y.; Luo, W.; Wang, C.; Li, Y.; Chen, C.; Song, J.; Dai, J.; Hitz, E. M.; Xu, S.; Yang, C.; Wang, Y.; Hu, L., High-capacity, low-tortuosity, and channel-guided lithium metal anode. 2017, 114 (14), 3584-3589.
50. Kanamura, K.; Tamura, H.; Shiraishi, S.; Takehara, Z. i., XPS Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing LiBF4. Journal of The Electrochemical Society 1995, 142 (2), 340-347.
51. Xu, R.; Zhang, X.-Q.; Cheng, X.-B.; Peng, H.-J.; Zhao, C.-Z.; Yan, C.; Huang, J.-Q., Artificial Soft–Rigid Protective Layer for Dendrite-Free Lithium Metal Anode. Advanced Function Materials 2018, 28 (8), 1705838.
52. Han, J.-G.; Hwang, C.; Kim, S. H.; Park, C.; Kim, J.; Jung, G. Y.; Baek, K.; Chae, S.; Kang, S. J.; Cho, J.; Kwak, S. K.; Song, H.-K.; Choi, N.-S., An Antiaging Electrolyte Additive for High-Energy-Density Lithium-Ion Batteries. Advanced Energy Materials 2020, 10 (20), 2000563.
53. Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A., Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon. Journal of Physical Chemistry Letters 2017, 8 (19), 4820-4825.
54. Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A., Ageing mechanisms in lithium-ion batteries. Journal of Power Sources 2005, 147 (1), 269-281.
55. Yoon, T.; Lee, T.; Soon, J.; Jeong, H.; Jurng, S.; Ryu, J. H.; Oh, S. M., The Investigation of Electrolyte Oxidation and Film Deposition Characteristics at High Potentials in a Carbonate-Based Electrolyte Using Pt Electrode. Journal of The Electrochemical Society 2018, 165 (5), A1095-A1098.
56. Gialampouki, M. A.; Hashemi, J.; Peterson, A. A., The Electrochemical Mechanisms of Solid–Electrolyte Interphase Formation in Lithium-Based Batteries. The Journal of Physical Chemistry C 2019, 123 (33), 20084-20092.
57. Han, J.-G.; Kim, K.; Lee, Y.; Choi, N.-S., Scavenging Materials to Stabilize LiPF6-Containing Carbonate-Based Electrolytes for Li-Ion Batteries. Advanced Materials 2019, 31 (20), 1804822.
58. Hundekar, P.; Jain, R.; Lakhnot, A. S.; Koratkar, N., Recent advances in the mitigation of dendrites in lithium-metal batteries. Journal of Applied Physics 2020, 128 (1), 010903.
59. Pang, Y.; Pan, J.; Yang, J.; Zheng, S.; Wang, C., Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review. Electrochemical Energy Reviews 2021.
60. Teichert, P.; Eshetu, G. G.; Jahnke, H.; Figgemeier, E., Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries. Batteries 2020, 6 (1), 8.
61. Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F., A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy 2017, 2 (9), 17119.
62. Han, Y.; Liu, B.; Xiao, Z.; Zhang, W.; Wang, X.; Pan, G.; Xia, Y.; Xia, X.; Tu, J., Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives. InfoMat. 2021, 3 (2), 155-174.
63. Assegie, A. A.; Cheng, J.-H.; Kuo, L.-M.; Su, W.-N.; Hwang, B.-J., Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10 (13), 6125-6138.
64. Zhang, J.-G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J., Lithium Metal Anodes with Nonaqueous Electrolytes. Chemical Reviews 2020, 120 (24), 13312-13348.
65. Deng, K.; Han, D.; Ren, S.; Wang, S.; Xiao, M.; Meng, Y., Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. Journal of Materials Chemistry A 2019, 7 (21), 13113-13119.
66. Gao, Y.; Yan, Z.; Gray, J. L.; He, X.; Wang, D.; Chen, T.; Huang, Q.; Li, Y. C.; Wang, H.; Kim, S. H.; Mallouk, T. E.; Wang, D., Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature Materials 2019, 18 (4), 384-389.
67. Lindgren, F.; Xu, C.; Niedzicki, L.; Marcinek, M.; Gustafsson, T.; Björefors, F.; Edström, K.; Younesi, R., SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (24), 15758-15766.
68. Zhu, Y.; Li, Y.; Bettge, M.; Abraham, D. P., Positive Electrode Passivation by LiDFOB Electrolyte Additive in High-Capacity Lithium-Ion Cells. Journal of The Electrochemical Society 2012, 159 (12), A2109-A2117.
69. Li, Y.; Wan, S.; Veith, G. M.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Sun, X.-G., A Novel Electrolyte Salt Additive for Lithium-Ion Batteries with Voltages Greater than 4.7 V. Advanced Energy Materials 2017, 7 (4), 1601397.
70. Jang, S. H.; Lee, K.-J.; Mun, J.; Han, Y.-K.; Yim, T., Chemically-induced cathode–electrolyte interphase created by lithium salt coating on Nickel-rich layered oxides cathode. Journal of Power Sources 2019, 410-411, 15-24.
71. von Aspern, N.; Röser, S.; Rezaei Rad, B.; Murmann, P.; Streipert, B.; Mönnighoff, X.; Tillmann, S. D.; Shevchuk, M.; Stubbmann-Kazakova, O.; Röschenthaler, G.-V.; Nowak, S.; Winter, M.; Cekic-Laskovic, I., Phosphorus additives for improving high voltage stability and safety of lithium ion batteries. Journal of Fluorine Chemistry 2017, 198, 24-33.
72. Zhao, W.; Zheng, G.; Lin, M.; Zhao, W.; Li, D.; Guan, X.; Ji, Y.; Ortiz, G. F.; Yang, Y., Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO2F2 salt-type additive and its working mechanism for LiNi0.5Mn0.25Co0.25O2 cathodes. Journal of Power Sources 2018, 380, 149-157.
73. Shangguan, X.; Xu, G.; Cui, Z.; Wang, Q.; Du, X.; Chen, K.; Huang, S.; Jia, G.; Li, F.; Wang, X.; Lu, D.; Dong, S.; Cui, G., Additive-Assisted Novel Dual-Salt Electrolyte Addresses Wide Temperature Operation of Lithium–Metal Batteries. Small 2019, 15 (16), 1900269.
74. Park, S.-J.; Hwang, J.-Y.; Sun, Y.-K., Trimethylsilyl azide (C3H9N3Si): a highly efficient additive for tailoring fluoroethylene carbonate (FEC) based electrolytes for Li-metal batteries. Journal of Materials Chemistry A 2019, 7 (22), 13441-13448.
75. Liu, H.; Naylor, A. J.; Menon, A. S.; Brant, W. R.; Edström, K.; Younesi, R., Understanding the Roles of Tris(trimethylsilyl) Phosphite (TMSPi) in LiNi0.8Mn0.1Co0.1O2 (NMC811)/Silicon–Graphite (Si–Gr) Lithium-Ion Batteries. 2020, 7 (15), 2000277.
76. Han, J.-G.; Hwang, E.; Kim, Y.; Park, S.; Kim, K.; Roh, D.-H.; Gu, M.; Lee, S.-H.; Kwon, T.-H.; Kim, Y.; Choi, N.-S.; Kim, B.-S., Dual-Functional Electrolyte Additives toward Long-Cycling Lithium-Ion Batteries: Ecofriendly Designed Carbonate Derivatives. ACS Applied Materials & Interfaces 2020, 12 (21), 24479-24487.
77. Yim, T.; Han, Y.-K., Tris(trimethylsilyl) Phosphite as an Efficient Electrolyte Additive To Improve the Surface Stability of Graphite Anodes. ACS Applied Materials \& Interfaces 2017, 9 (38), 32851-32858.
78. Park, S.-J.; Hwang, J.-Y.; Yoon, C. S.; Jung, H.-G.; Sun, Y.-K., Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces 2018, 10 (21), 17985-17993.
79. Hagos, T. T.; Su, W.-N.; Huang, C. J.; Thirumalraj, B.; Chiu, S.-F.; Abrha, L. H.; Hagos, T. M.; Bezabh, H. K.; Berhe, G. B.; Addis, T. W.; Cherng, J.-Y.; Yang, Y.-W.; Hwang, B. J., Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. Journal of Power Sources 2020, 461, 228053.
80. Hagos, T. M.; Hagos, T. T.; Bezabh, H. K.; Berhe, G. B.; Abrha, L. H.; Chiu, S.-F.; Huang, C.-J.; Su, W.-N.; Dai, H.; Hwang, B. J., Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS Applied Energy Materials 2020, 3 (11), 10722-10733.
81. Beyene, T. T. B., H. K.; Weret, M. A.; Hagos, T. M.; Huang, C.-J.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang. B.-J., Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. Journal of The Electrochemical Society, 2019, 166 (8), A1501-A1509.
82. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J.-G., Anode-Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials 2016, 26 (39), 7094-7102.
83. Kong, W.; Li, H.; Huang, X.; Chen, L., Gas evolution behaviors for several cathode materials in lithium-ion batteries. Journal of Power Sources 2005, 142 (1), 285-291.
84. Bernhard, R.; Metzger, M.; Gasteiger, H. A., Gas Evolution at Graphite Anodes Depending on Electrolyte Water Content and SEI Quality Studied by On-Line Electrochemical Mass Spectrometry. Journal of The Electrochemical Society 2015, 162 (10), A1984-A1989.
85. Metzger, M.; Strehle, B.; Solchenbach, S.; Gasteiger, H. A., Origin of H2Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation. Journal of The Electrochemical Society 2016, 163 (5), A798-A809.
86. Guéguen, A.; Streich, D.; He, M.; Mendez, M.; Chesneau, F. F.; Novák, P.; Berg, E. J., Decomposition of LiPF6in High Energy Lithium-Ion Batteries Studied with Online Electrochemical Mass Spectrometry. Journal of The Electrochemical Society 2016, 163 (6), A1095-A1100.
87. Schwenke, K. U.; Solchenbach, S.; Demeaux, J.; Lucht, B. L.; Gasteiger, H. A., The Impact of CO2 Evolved from VC and FEC during Formation of Graphite Anodes in Lithium-Ion Batteries. Journal of The Electrochemical Society 2019, 166 (10), A2035-A2047.
88. Freiberg, A. T. S.; Sicklinger, J.; Solchenbach, S.; Gasteiger, H. A., Li2CO3 decomposition in Li-ion batteries induced by the electrochemical oxidation of the electrolyte and of electrolyte impurities. Electrochimica Acta 2020, 346, 136271.
89. Yan, C.; Cheng, X.-B.; Tian, Y.; Chen, X.; Zhang, X.-Q.; Li, W.-J.; Huang, J.-Q.; Zhang, Q., Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition. 2018, 30 (25), 1707629.
90. Hagos, T. M.; Berhe, G. B.; Hagos, T. T.; Bezabh, H. K.; Abrha, L. H.; Beyene, T. T.; Huang, C.-J.; Yang, Y.-W.; Su, W.-N.; Dai, H.; Hwang, B.-J., Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochimica Acta 2019, 316, 52-59.
91. Hagos, T. T.; Thirumalraj, B.; Huang, C.-J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S.-F.; Su, W.-N.; Hwang, B.-J., Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces 2019, 11 (10), 9955-9963.
92. Genovese, M.; Louli, A. J.; Weber, R.; Martin, C.; Taskovic, T.; Dahn, J. R., Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries. Journal of The Electrochemical Society 2019, 166 (14), A3342-A3347.
93. Weber, R.; Genovese, M.; Louli, A. J.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J. R., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy 2019, 4 (8), 683-689.
94. Xue, W.; Shi, Z.; Huang, M.; Feng, S.; Wang, C.; Wang, F.; Lopez, J.; Qiao, B.; Xu, G.; Zhang, W.; Dong, Y.; Gao, R.; Shao-Horn, Y.; Johnson, J. A.; Li, J., FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Energy & Environmental Science 2020, 13 (1), 212-220.
95. Sahalie, N. A.; Assegie, A. A.; Su, W.-N.; Wondimkun, Z. T.; Jote, B. A.; Thirumalraj, B.; Huang, C.-J.; Yang, Y.-W.; Hwang, B.-J., Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. Journal of Power Sources 2019, 437, 226912.
96. Metzger, M.; Marino, C.; Sicklinger, J.; Haering, D.; Gasteiger, H. A., Anodic Oxidation of Conductive Carbon and Ethylene Carbonate in High-Voltage Li-Ion Batteries Quantified by On-Line Electrochemical Mass Spectrometry. J. Electrochem. Soc. 2015, 162 (7), A1123-A1134.
97. Galushkin, N. Е.; Yazvinskaya, N. N.; Galushkin, D. N., Mechanism of Gases Generation during Lithium-Ion Batteries Cycling. Journal of The Electrochemical Society 2019, 166 (6), A897-A908.
98. Strehle, B.; Solchenbach, S.; Metzger, M.; Schwenke, K. U.; Gasteiger, H. A., The Effect of CO2 on Alkyl Carbonate Trans-Esterification during Formation of Graphite Electrodes in Li-Ion Batteries. Journal of The Electrochemical Society 2017, 164 (12), A2513-A2526.
99. Ye, H.; Xin, S.; Yin, Y.-X.; Li, J.-Y.; Guo, Y.-G.; Wan, L.-J., Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. J. the Am. Chem. Soc. 2017, 139 (16), 5916-5922.
100. Yang, Y.; Davies, D. M.; Yin, Y.; Borodin, O.; Lee, J. Z.; Fang, C.; Olguin, M.; Zhang, Y.; Sablina, E. S.; Wang, X.; Rustomji, C. S.; Meng, Y. S., High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes. Joule 2019, 3 (8), 1986-2000.
101. Woo, J.-J.; Maroni, V. A.; Liu, G.; Vaughey, J. T.; Gosztola, D. J.; Amine, K.; Zhang, Z., Symmetrical Impedance Study on Inactivation Induced Degradation of Lithium Electrodes for Batteries Beyond Lithium-Ion. Journal of the American Chemical Society 2014, 161 (5), A827-A830.
102. Milien, M. S.; Beyer, H.; Beichel, W.; Klose, P.; Gasteiger, H. A.; Lucht, B. L.; Krossing, I., Lithium Bis(2,2,2-trifluoroethyl)phosphate Li[O2P(OCH2CF3)2]: A High Voltage Additive for LNMO/Graphite Cells. Journal of the American Chemical Society 2018, 165 (11), A2569-A2576.
103. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews 2017, 117 (15), 10403-10473.
104. Li, L.; Li, S.; Lu, Y., Suppression of dendritic lithium growth in lithium metal-based batteries. Chemical Communications 2018, 54 (50), 6648-6661.
105. Zheng, G.; Xiang, Y.; Chen, S.; Ganapathy, S.; Verhallen, T. W.; Liu, M.; Zhong, G.; Zhu, J.; Han, X.; Wang, W.; Zhao, W.; Wagemaker, M.; Yang, Y., Additives synergy for stable interface formation on rechargeable lithium metal anodes. Energy Storage Materials 2019.
106. Aiken, C. P.; Xia, J.; Wang, D. Y.; Stevens, D. A.; Trussler, S.; Dahn, J. R., An Apparatus for the Study of In Situ Gas Evolution in Li-Ion Pouch Cells. Journal of the Electrochemical Society 2014, 161 (10), A1548-A1554.
107. Self, J.; Aiken, C. P.; Petibon, R.; Dahn, J. R., Survey of Gas Expansion in Li-Ion NMC Pouch Cells. Journal of the Electrochemical Society 2015, 162 (6), A796-A802.
108. Jung, R.; Strobl, P.; Maglia, F.; Stinner, C.; Gasteiger, H. A., Temperature Dependence of Oxygen Release from LiNi0.6Mn0.2Co0.2O2 (NMC622) Cathode Materials for Li-Ion Batteries. Journalof the Electrochemical Society 2018, 165 (11), A2869-A2879.
109. Li, W.; Song, B.; Manthiram, A., High-voltage positive electrode materials for lithium-ion batteries. Chemical Society Reviews 2017, 46 (10), 3006-3059.
110. Guéguen, A.; Bolli, C.; Mendez, M. A.; Berg, E. J., Elucidating the Reactivity of TMSPi and TMSPa Additives in Carbonate Electrolytes - A Comparative OEMS Study. ACS Applied Energy Materials 2019.
111. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews 2004, 104 (10), 4303-4418.
112. Metzger, M.; Strehle, B.; Solchenbach, S.; Gasteiger, H. A., Origin of H2 Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation. Journal of The Electrochemical Society 2016, 163 (5), A798-A809.
113. Zhang, S. S., Insight into the Gassing Problem of Li-ion Battery. Frontiers in Energy Research 2014, 2 (59).
114. Kriston, A.; Adanouj, I.; Ruiz, V.; Pfrang, A., Quantification and simulation of thermal decomposition reactions of Li-ion battery materials by simultaneous thermal analysis coupled with gas analysis. Journal of Power Sources 2019, 435, 226774.
115. Li, Y.; Qi, Y., Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface. Energy & Environmental Science 2019, 12 (4), 1286-1295.
116. Jin, Y.; Kneusels, N.-J. H.; Magusin, P. C. M. M.; Kim, G.; Castillo-Martínez, E.; Marbella, L. E.; Kerber, R. N.; Howe, D. J.; Paul, S.; Liu, T.; Grey, C. P., Identifying the Structural Basis for the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbonate. Journal of the American Chemical Society 2017, 139 (42), 14992-15004.
117. He, M.; Boulet-Roblin, L.; Borel, P.; Tessier, C.; Novák, P.; Villevieille, C.; Berg, E. J., Effects of Solvent, Lithium Salt, and Temperature on Stability of Carbonate-Based Electrolytes for 5.0 V LiNi0.5Mn1.5O4Electrodes. Journal of the Electrochemical Society 2015, 163 (2), A83-A89.
118. Bi, Y.; Wang, T.; Liu, M.; Du, R.; Yang, W.; Liu, Z.; Peng, Z.; Liu, Y.; Wang, D.; Sun, X., Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance. RSC Advances 2016, 6 (23), 19233-19237.
119. Seo, D. M.; Chalasani, D.; Parimalam, B. S.; Kadam, R.; Nie, M.; Lucht, B. L., Reduction Reactions of Carbonate Solvents for Lithium Ion Batteries. ECS Electrochemical Letters 2014, 3 (9), A91-A93.
120. Xu, S. D.; Zhuang, Q. C.; Wang, J.; Xu, Y. Q.; Zhu, Y. B., New Insight into Vinylethylene Carbonate as a Film Forming Additive to Ethylene Carbonate-Based Electrolytes for Lithium-Ion Batteries. International Journal of Electrochemical Science 2013, 8, 8058-8076.
121. Pritzl, D.; Solchenbach, S.; Wetjen, M.; Gasteiger, H. A., Analysis of Vinylene Carbonate (VC) as Additive in Graphite/LiNi0.5Mn1.5O4Cells. Journal of the Electrochemical Society 2017, 164 (12), A2625-A2635.
122. Hobold, G. M.; Khurram, A.; Gallant, B. M., Operando Gas Monitoring of Solid Electrolyte Interphase Reactions on Lithium. Chemistry of Materials 2020, 32 (6), 2341-2352.
123. Young, J.; Smeu, M., Ethylene Carbonate-Based Electrolyte Decomposition and Solid–Electrolyte Interphase Formation on Ca Metal Anodes. Journal of Physical Chemistry Letters 2018, 9 (12), 3295-3300.
124. Gachot, G.; Grugeon, S.; Armand, M.; Pilard, S.; Guenot, P.; Tarascon, J.-M.; Laruelle, S., Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. Journal of Power Sources 2008, 178 (1), 409-421.
125. Solchenbach, S.; Metzger, M.; Egawa, M.; Beyer, H.; Gasteiger, H. A., Quantification of PF5 and POF3 from Side Reactions of LiPF6 in Li-Ion Batteries. Joutnal of the Electrochemical Society 2018, 165 (13), A3022-A3028.
126. An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52-76.
127. Nakajima, T.; Hirobayashi, Y.; Takayanagi, Y.; Ohzawa, Y., Reactions of metallic Li or LiC6 with organic solvents for lithium ion battery. Journal of Power Sources 2013, 243, 581-584.
128. Li, T.; Yuan, X.-Z.; Zhang, L.; Song, D.; Shi, K.; Bock, C., Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries. Electrochemical Energy Reviews 2019.
129. Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G., Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes. Journal of the Americal Chemical Society 2011, 133 (20), 8040-8047.
130. Yabuuchi, N.; Yoshii, K.; Myung, S.-T.; Nakai, I.; Komaba, S., Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. Journal of the American Chemical Society 2011, 133 (12), 4404-4419.
131. Balaish, M.; Kraytsberg, A.; Ein-Eli, Y., A critical review on lithium–air battery electrolytes. Physical Chemistry Chemical Physics 2014, 16 (7), 2801-2822.
132. Lian, F.; Li, Y.; He, Y.; Guan, H.; Yan, K.; Qiu, W.; Chou, K.-C.; Axmann, P.; Wohlfahrt-Mehrens, M., Preparation of LiBOB via rheological phase method and its application to mitigate voltage fade of Li1.16[Mn0.75Ni0.25]0.84O2 cathode. RSC Advances 2015, 5 (105), 86763-86770.
133. Wandt, J.; Freiberg, A. T. S.; Ogrodnik, A.; Gasteiger, H. A., Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Materials Today 2018, 21 (8), 825-833.
134. Freiberg, A. T. S.; Roos, M. K.; Wandt, J.; de Vivie-Riedle, R.; Gasteiger, H. A., Singlet Oxygen Reactivity with Carbonate Solvents Used for Li-Ion Battery Electrolytes. Journal of Physical Chemistry A 2018, 122 (45), 8828-8839.
135. Xing, L.; Li, W.; Wang, C.; Gu, F.; Xu, M.; Tan, C.; Yi, J., Theoretical Investigations on Oxidative Stability of Solvents and Oxidative Decomposition Mechanism of Ethylene Carbonate for Lithium Ion Battery Use. Journal of Physical Chemistry B 2009, 113 (52), 16596-16602.
136. Wilken, S.; Treskow, M.; Scheers, J.; Johansson, P.; Jacobsson, P., Initial stages of thermal decomposition of LiPF6-based lithium ion battery electrolytes by detailed Raman and NMR spectroscopy. RSC Advances 2013, 3 (37), 16359-16364.
137. Schultz, C.; Vedder, S.; Streipert, B.; Winter, M.; Nowak, S., Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS. RSC Advances 2017, 7 (45), 27853-27862.
138. Lamb, J.; Orendorff, C. J.; Roth, E. P.; Langendorf, J., Studies on the Thermal Breakdown of Common Li-Ion Battery Electrolyte Components. Journal of The Electrochemical Society 2015, 162 (10), A2131-A2135.
139. Leung, K.; Soto, F.; Hankins, K.; Balbuena, P. B.; Harrison, K. L., Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces. Journal of Physical Chememistry C 2016, 120 (12), 6302-6313.
140. Onuki, M.; Kinoshita, S.; Sakata, Y.; Yanagidate, M.; Otake, Y.; Ue, M.; Deguchi, M., Identification of the Source of Evolved Gas in Li-Ion Batteries Using #2#1 -labeled Solvents. The Journal of Electrochemical Society 2008, 155 (11), A794-A797.
141. Thirumalraj, B.; Hagos, T. T.; Huang, C.-J.; Teshager, M. A.; Cheng, J.-H.; Su, W.-N.; Hwang, B.-J., Nucleation and Growth Mechanism of Lithium Metal Electroplating. Joutnal of the Americaln Chemical Society 2019, 141 (46), 18612-18623.
142. Ramos-Sanchez, G.; Soto, F. A.; Martinez de la Hoz, J. M.; Liu, Z.; Mukherjee, P. P.; El-Mellouhi, F.; Seminario, J. M.; Balbuena, P. B., Computational Studies of Interfacial Reactions at Anode Materials: Initial Stages of the Solid-Electrolyte-Interphase Layer Formation. Journal of Electrochemical Energy Conversion and Storage 2016, 13 (3).
143. Spotnitz, R.; Franklin, J., Abuse behavior of high-power, lithium-ion cells. Journal of Power Sources 2003, 113 (1), 81-100.
144. Liu, T.; Lin, L.; Bi, X.; Tian, L.; Yang, K.; Liu, J.; Li, M.; Chen, Z.; Lu, J.; Amine, K.; Xu, K.; Pan, F., In situ quantification of interphasial chemistry in Li-ion battery. Nature Nanotechnology 2019, 14 (1), 50-56.
145. Henschel, J.; Peschel, C.; Klein, S.; Horsthemke, F.; Winter, M.; Nowak, S., Clarification of Decomposition Pathways in a State-of-the-Art Lithium Ion Battery Electrolyte through 13C-Labeling of Electrolyte Components. Angewandte Chemie International Edition 2020, 59 (15), 6128-6137.
146. Zhang, X.-Q.; Cheng, X.-B.; Chen, X.; Yan, C.; Zhang, Q., Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials 2017, 27 (10), 1605989.
147. Liu, L.; Gu, S.; Wang, S.; Zhang, X.; Chen, S., A LiPO2F2/LiPF6 dual-salt electrolyte enabled stable cycling performance of nickel-rich lithium ion batteries. RSC Advances 2020, 10 (3), 1704-1710.
148. Hagos, T. T.; Thirumalraj, B.; Huang, C.-J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S.-F.; Su, W.-N.; Hwang, B.-J., Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Appl. Mater. & Interfaces 2019, 11 (10), 9955-9963.
149. Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H., Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chemical Reviews 2020, 120 (14), 6820-6877.
150. Veith, G. M.; Doucet, M.; Baldwin, J. K.; Sacci, R. L.; Fears, T. M.; Wang, Y.; Browning, J. F., Direct Determination of Solid-Electrolyte Interphase Thickness and Composition as a Function of State of Charge on a Silicon Anode. The Journal of Physical Chemistry C 2015, 119 (35), 20339-20349.
151. Mandli, A. R.; Kaushik, A.; Patil, R. S.; Naha, A.; Hariharan, K. S.; Kolake, S. M.; Han, S.; Choi, W., Analysis of the effect of resistance increase on the capacity fade of lithium ion batteries. International Journal of Energy Research 2019, 43 (6), 2044-2056.
152. Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials 2018, 4, 15.
153. Hausbrand, R. J., W.,, Reaction Layer Formation and Charge Transfer at Li-Ion Cathode—Electrolyte Interfaces: Concepts and Results Obtained by a Surface Science Approach. Surface Science and Electrochemistry 2018, 232 - 245.
154. Soto, F. A.; Ma, Y.; Martinez de la Hoz, J. M.; Seminario, J. M.; Balbuena, P. B., Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries. Chemistry of Materials 2015, 27 (23), 7990-8000.
155. Liu Y.; Xiong S.; Wang J.; Jiao X.; Li S.; Zhang C.; Song Z.; Song J., Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Materials 2019, 19, 24 - 30.
156. Zhang, R.; Chen, X.-R.; Chen, X.; Cheng, X.-B.; Zhang, X.-Q.; Yan, C.; Zhang, Q., Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. Angewandte Chemie International Edition 2017, 56 (27), 7764-7768.
157. Yan, K.; Wang, J.; Zhao, S.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G., Temperature-Dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes. Angewandte Chemie International Edition 2019, 58 (33), 11364-11368.
158. Yang, Y.; Davies, D. M.; Yin, Y.; Borodin, O.; Lee, J. Z.; Fang, C.; Olguin, M.; Zhang, Y.; Sablina, E. S.; Wang, X.; Rustomji, C. S.; Meng, Y. S., High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes. Joule 2019, 3 (8), 1986 - 2000.
159. Yang, Y.; Davies, D. M.; Yin, Y.; Borodin, O.; Lee, J. Z.; Fang, C.; Olguin, M.; Zhang, Y.; Sablina, E. S.; Wang, X.; Rustomji, C. S.; Meng, Y. S., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52 - 76.
160. Wondimkun, Z. T.; Tegegne, W. A.; Jiang, S.-K.; Huang, C.-J.; Sahalie, N. A.; Weret, M. A.; Hsua, J.-Y.; Hsieh, P.-L.; Huang, Y.-S.; Wu, S.-H.; Su, W.-N.; Hwang, B. J., Highly-lithiophilic Ag@PDA-GO film to Suppress Dendrite Formation on Cu Substrate in Anode-free Lithium Metal Batteries. Energy Storage Materials 2021, 35, 334 - 344.
161. Guo, W.; Meng, Y.; Hu, Y.; Wu, X.; Ju, Z.; Zhuang, Q., Surface and Interface Modification of Electrode Materials for Lithium-Ion Batteries With Organic Liquid Electrolyte. Frontiers in Energy Research 2020, 8 (170).
162. Kim H. R.; Choi W. M., Graphene modified copper current collector for enhanced electrochemical performance of Li-ion battery. Scripta Materialia 2018, 146, 100 - 104.
163. Cui, S.; Zhai, P.; Yang, W.; Wei, Y.; Xiao, J.; Deng, L.; Gong, Y., Large-Scale Modification of Commercial Copper Foil with Lithiophilic Metal Layer for Li Metal Battery. Advanced sceinece news 2020, 16 (5), 1905620.
164. Yang, J., Shkrob, I., Liu, K., Connell, J., Rago, N. L. D., Zhang, Z., Liao, C., 4-(Trimethylsilyl) Morpholine as a Multifunctional Electrolyte Additive in High Voltage Lithium Ion Batteries. Journal of the Electrochemical Society 2020, 167 070533.
165. Li, J.; Xing, L.; Zhang, R.; Chen, M.; Wang, Z.; Xu, M.; Li, W., Tris(trimethylsilyl)borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte. Journal of Power Sources 2015, 285, 360 - 366.
166. Guo, Y.; Li, D.; Xiong, R.; Li, H., Investigation of the temperature-dependent behaviours of Li metal anode. Chemical Communications 2019, 55 (66), 9773-9776.
167. Gong, C.; Pu, S. D.; Gao, X.; Yang, S.; Liu, J.; Ning, Z.; Rees, G. J.; Capone, I.; Pi, L.; Liu, B.; Hartley, G. O.; Fawdon, J.; Luo, J.; Pasta, M.; Grovenor, C. R. M.; Bruce, P. G.; Robertson, A. W., Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy. Advanced Energy Materials 2021, 11 (10), 2003118.
168. Pang, Q.; Liang, X.; Kochetkov, I. R.; Hartmann, P.; Nazar, L. F., Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ. Angewandte Chemie International Edition 2018, 57 (31), 9795-9798.
169. Shi, Y.; Wan, J.; Liu, G.-X.; Zuo, T.-T.; Song, Y.-X.; Liu, B.; Guo, Y.-G.; Wen, R.; Wan, L.-J., Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi-Solid-State Lithium-Metal Batteries. Angewandte Chemie International Edition 2020, 59 (41), 18120-18125.
170. Umamaheswari. J., T. R. G., Mary E. F., , Review—Lithium Plating Detection Methods in Li-Ion Batteries. Journal of The Electrochemical Society 167, 160552.
171. Li, Q.; Jiao, S.; Luo, L.; Ding, M. S.; Zheng, J.; Cartmell, S. S.; Wang, C. M.; Xu, K.; Zhang, J. G.; Xu, W., Wide-Temperature Electrolytes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2017, 9 (22), 18826-18835.
172. Nanda, S.; Gupta, A.; Manthiram, A., Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries. 2021, 11 (2), 2000804.
173. Xu, C.; Lindgren, F.; Philippe, B.; Gorgoi, M.; Björefors, F.; Edström, K.; Gustafsson, T., Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive. Chemistry of Materials 2015, 27 (7), 2591-2599.
174. Schroder, K.; Alvarado, J.; Yersak, T. A.; Li, J.; Dudney, N.; Webb, L. J.; Meng, Y. S.; Stevenson, K. J., The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes. Chemistry of Materials 2015, 27 (16), 5531-5542.
175. Chen, L.; Wang, K.; Xie, X.; Xie, J., Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. Journal of Power Sources 2007, 174 (2), 538-543.
176. Peng, Z.; Cao, X.; Gao, P.; Jia, H.; Ren, X.; Roy, S.; Li, Z.; Zhu, Y.; Xie, W.; Liu, D.; Li, Q.; Wang, D.; Xu, W.; Zhang, J.-G., High-Power Lithium Metal Batteries Enabled by High-Concentration Acetonitrile-Based Electrolytes with Vinylene Carbonate Additive. Advanced Function Materials 2020, 30 (24), 2001285.
177. Dahee, J. H., L.; Taeyeong, H.; Seokwoo, K.; Myung-Hyun, R.; and YongMin, L.;, Effect of Lithium Nitrate (LiNO3) on Lithium Metal Secondary Batteries As a Lithium Metal Stabilizing Electrolyte Additive. The Electrochemical Society 2016, MA2016-02 594.
178. Piao, N.; Liu, S.; Zhang, B.; Ji, X.; Fan, X.; Wang, L.; Wang, P.-F.; Jin, T.; Liou, S.-C.; Yang, H.; Jiang, J.; Xu, K.; Schroeder, M. A.; He, X.; Wang, C., Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters 2021, 1839-1848.
179. Liu, J.; Song, X.; Zhou, L.; Wang, S.; Song, W.; Liu, W.; Long, H.; Zhou, L.; Wu, H.; Feng, C.; Guo, Z., Fluorinated phosphazene derivative – A promising electrolyte additive for high voltage lithium ion batteries: From electrochemical performance to corrosion mechanism. Nano Energy 2018, 46, 404-414.
1. Shitaw, K. N.; Yang, S.-C.; Jiang, S.-K.; Huang, C.-J.; Sahalie, N. A.; Nikodimos, Y.; Weldeyohannes, H. H.; Wang, C.-H.; Wu, S.-H.; Su, W.-N.; Hwang, B. J., Decoupling Interfacial Reactions at Anode and Cathode by Combining Online Electrochemical Mass Spectroscopy with Anode-Free Li-Metal Battery. Adv. Funct. materials 2021, 31 (6), 2006951.
2. Mukrimin Sevket, G.; Yalcin, T., Classification and assessment of energy storage systems. Renewable and Sustainable Energy Reviews 2017, 75, 1187-1197.
3. Ould Amrouche, S.; Rekioua, D.; Rekioua, T.; Bacha, S., Overview of energy storage in renewable energy systems. International Journal of Hydrogen Energy 2016, 41 (45), 20914-20927.
4. Hosseini, S. E.; Wahid, M. A., Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews 2016, 57, 850-866.
5. Guney, M. S.; Tepe, Y., Classification and assessment of energy storage systems. Renewable and Sustainable Energy Reviews 2017, 75, 1187-1197.
6. Kordesch, K.; Taucher-Mautner, W., HISTORY | Primary Batteries. In Encyclopedia of Electrochemical Power Sources, Garche, J., Ed. Elsevier: Amsterdam, 2009; pp 555-564.
7. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P., Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials 1998, 10 (10), 725-763.
8. May, G. J.; Davidson, A.; Monahov, B., Lead batteries for utility energy storage: A review. Journal of Energy Storage 2018, 15, 145-157.
9. Chen, S.; Wen, K.; Fan, J.; Bando, Y.; Golberg, D., Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. Journal of Materials Chemistry A 2018, 6 (25), 11631-11663.
10. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
11. Chen, Z.; Amine, R.; Ma, Z.-F.; Amine, K., Interfacial reactions in lithium batteries. Journal of Physics D: Applied Physics 2017, 50 (30), 303001.
12. Bhatt, M. D.; O'Dwyer, C., Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical Chemistry Chemical Physics 2015, 17 (7), 4799-4844.
13. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology 2017, 12 (3), 194-206.
14. Ye, H.; Xin, S.; Yin, Y.-X.; Li, J.-Y.; Guo, Y.-G.; Wan, L.-J., Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. Journal of the American Chemical Society 2017, 139 (16), 5916-5922.
15. Liu, B. Z., J.-G.; Xu., W., Advancing Lithium Metal Batteries. Joule 2018, 2 (5), 833 - 845.
16. Li, Z.; Huang, J.; Yann Liaw, B.; Metzler, V.; Zhang, J., A review of lithium deposition in lithium-ion and lithium metal secondary batteries. Journal of Power Sources 2014, 254, 168-182.
17. Aurbach, D.; Cohen, Y., The Application of Atomic Force Microscopy for the Study of Li Deposition Processes. Journal of The Electrochemical Society 1996, 143 (11), 3525-3532.
18. Puthusseri, D.; Parmananda, M.; Mukherjee, P. P.; Pol, V. G., Probing the Thermal Safety of Li Metal Batteries. Journal of The Electrochemical Society 2020, 167, 120513.
19. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J., Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science 2016, 9 (6), 1955-1988.
20. Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C.; Rodriguez-Martínez, L. M.; Armand, M., Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angewandte Chemie International Edition 2018, 57 (46), 15002-15027.
21. Amit, M.; Akansha, M.; Soumen, B.; Shweta, J. M.; Nagaraj, P. S.; Shyam, S. S.; Mallikarjuna, N. N.; Tejraj, M. A., Electrode materials for lithium-ion batteries. Materials Science for Energy Technologies 2018, 1 (2), 182-187.
22. Di Lecce, D.; Verrelli, R.; Hassoun, J., Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations. Green Chemistry 2017, 19 (15), 3442-3467.
23. Tasaki, K., Solvent Decompositions and Physical Properties of Decomposition Compounds in Li-Ion Battery Electrolytes Studied by DFT Calculations and Molecular Dynamics Simulations. Journl of Physical Chemistry B 2005, 109 (7), 2920-2933.
24. Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials 2018, 4 (1), 15.
25. Phadke, S.; Cao, M.; Anouti, M., Approaches to Electrolyte Solvent Selection for Poly-Anthraquinone Sulfide Organic Electrode Material. ChemSusChem 2018, 11 (5), 965-974.
26. Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H.-K., Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries. Chemistry—A European Journal 2011, 17 (51), 14326-14346.
27. Appetecchi, G. B., Safer electrolyte components for rechargeable batteries %J Physical Sciences Reviews. 2019, 4 (3).
28. Liu, Z.; Chai, J.; Xu, G.; Wang, Q.; Cui, G., Functional lithium borate salts and their potential application in high performance lithium batteries. Coordination Chemistry Reviews 2015, 292, 56-73.
29. Younesi, R.; Veith, G. M.; Johansson, P.; Edström, K.; Vegge, T., Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy & Environmental Science 2015, 8 (7), 1905-1922.
30. Mosallanejad, B., Phthalimide Derivatives: New Promising Additives for Functional Electrolyte in Lithium-ion Batteries. Chemical Methodologies 3 (2), 261-275.
31. Qiao, L.; Cui, Z.; Chen, B.; Xu, G.; Zhang, Z.; Ma, J.; Du, H.; Liu, X.; Huang, S.; Tang, K.; Dong, S.; Zhou, X.; Cui, G., A promising bulky anion based lithium borate salt for lithium metal batteries. Chemical Science 2018, 9 (14), 3451-3458.
32. Dong, Y.; Young, B. T.; Zhang, Y.; Yoon, T.; Heskett, D. R.; Hu, Y.; Lucht, B. L., Effect of Lithium Borate Additives on Cathode Film Formation in LiNi0.5Mn1.5O4/Li Cells. ACS Applied Materials & Interfaces 2017, 9 (24), 20467-20475.
33. Yang, G.; Shi, J.; Shen, C.; Wang, S.; Xia, L.; Hu, H.; Luo, H.; Xia, Y.; Liu, Z., Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO2F2) additive. RSC Advances 2017, 7 (42), 26052-26059.
34. Dong, Q.; Guo, F.; Cheng, Z.; Mao, Y.; Huang, R.; Li, F.; Dong, H.; Zhang, Q.; Li, W.; Chen, H.; Luo, Z.; Shen, Y.; Wu, X.; Chen, L., Insights into the Dual Role of Lithium Difluoro(oxalato)borate Additive in Improving the Electrochemical Performance of NMC811||Graphite Cells. ACS Applied Energy Materials 2020, 3 (1), 695-704.
35. Shen, X.; Zhang, X.-Q.; Ding, F.; Huang, J.-Q.; Xu, R.; Chen, X.; Yan, C.; Su, F.-Y.; Chen, C.-M.; Liu, X.; Zhang, Q., Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect. Energy Material Advances 2021, 2021, 1205324.
36. Lei, W.; Ziyue, Z.; Xiao, Y.; Feng, H.; Lei, W.; Wenbin, L.; Ji, L.; Shi Xue, D., Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Materials 2018, 14, 22-48.
37. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 513-537.
38. Li, Q.; Pan, H.; Li, W.; Wang, Y.; Wang, J.; Zheng, J.; Yu, X.; Li, H.; Chen, L., Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. ACS Energy Letters 2018, 3 (9), 2259-2266.
39. Ghazi, Z. A.; Sun, Z.; Sun, C.; Qi, F.; An, B.; Li, F.; Cheng, H.-M., Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. Small 2019, 15 (32), 1900687.
40. Yang, H.; Guo, C.; Naveed, A.; Lei, J.; Yang, J.; Nuli, Y.; Wang, J., Recent progress and perspective on lithium metal anode protection. Energy Storage Materials 2018, 14, 199-221.
41. Wu, F.; Maier, J.; Yu, Y., Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews 2020, 49 (5), 1569-1614.
42. Li, Z.; Xu, N.; Sha, Y.; Ji, J.; Liu, T.; Yan, L.; He, Y.; Zheng, J.; Ling, M.; Lu, Y.; Liang, C., Chitosan oligosaccharide derived polar host for lithium deposition in lithium metal batteries. Sustainable Materials and Technologies 2020, 24, e00158.
43. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnology 2017, 12, 194.
44. Guo, Y.; Li, H.; Zhai, T., Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. Advanced Materials 2017, 29 (29), 1700007.
45. Chen, K.-H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P., Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. Journal of Materials Chemistry A 2017, 5 (23), 11671-11681.
46. Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M.; Mullins, C. B., Electrode Degradation in Lithium-Ion Batteries. ACS Nano 2020, 14 (2), 1243-1295.
47. Gunnarsdóttir, A. B.; Amanchukwu, C. V.; Menkin, S.; Grey, C. P., Noninvasive In Situ NMR Study of “Dead Lithium” Formation and Lithium Corrosion in Full-Cell Lithium Metal Batteries. Journal of the American Chemical Society 2020, 142 (49), 20814-20827.
48. Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M.-H.; Alvarado, J.; Schroeder, M. A.; Yang, Y.; Lu, B.; Williams, N.; Ceja, M.; Yang, L.; Cai, M.; Gu, J.; Xu, K.; Wang, X.; Meng, Y. S., Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572 (7770), 511-515.
49. Zhang, Y.; Luo, W.; Wang, C.; Li, Y.; Chen, C.; Song, J.; Dai, J.; Hitz, E. M.; Xu, S.; Yang, C.; Wang, Y.; Hu, L., High-capacity, low-tortuosity, and channel-guided lithium metal anode. 2017, 114 (14), 3584-3589.
50. Kanamura, K.; Tamura, H.; Shiraishi, S.; Takehara, Z. i., XPS Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing LiBF4. Journal of The Electrochemical Society 1995, 142 (2), 340-347.
51. Xu, R.; Zhang, X.-Q.; Cheng, X.-B.; Peng, H.-J.; Zhao, C.-Z.; Yan, C.; Huang, J.-Q., Artificial Soft–Rigid Protective Layer for Dendrite-Free Lithium Metal Anode. Advanced Function Materials 2018, 28 (8), 1705838.
52. Han, J.-G.; Hwang, C.; Kim, S. H.; Park, C.; Kim, J.; Jung, G. Y.; Baek, K.; Chae, S.; Kang, S. J.; Cho, J.; Kwak, S. K.; Song, H.-K.; Choi, N.-S., An Antiaging Electrolyte Additive for High-Energy-Density Lithium-Ion Batteries. Advanced Energy Materials 2020, 10 (20), 2000563.
53. Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A., Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon. Journal of Physical Chemistry Letters 2017, 8 (19), 4820-4825.
54. Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A., Ageing mechanisms in lithium-ion batteries. Journal of Power Sources 2005, 147 (1), 269-281.
55. Yoon, T.; Lee, T.; Soon, J.; Jeong, H.; Jurng, S.; Ryu, J. H.; Oh, S. M., The Investigation of Electrolyte Oxidation and Film Deposition Characteristics at High Potentials in a Carbonate-Based Electrolyte Using Pt Electrode. Journal of The Electrochemical Society 2018, 165 (5), A1095-A1098.
56. Gialampouki, M. A.; Hashemi, J.; Peterson, A. A., The Electrochemical Mechanisms of Solid–Electrolyte Interphase Formation in Lithium-Based Batteries. The Journal of Physical Chemistry C 2019, 123 (33), 20084-20092.
57. Han, J.-G.; Kim, K.; Lee, Y.; Choi, N.-S., Scavenging Materials to Stabilize LiPF6-Containing Carbonate-Based Electrolytes for Li-Ion Batteries. Advanced Materials 2019, 31 (20), 1804822.
58. Hundekar, P.; Jain, R.; Lakhnot, A. S.; Koratkar, N., Recent advances in the mitigation of dendrites in lithium-metal batteries. Journal of Applied Physics 2020, 128 (1), 010903.
59. Pang, Y.; Pan, J.; Yang, J.; Zheng, S.; Wang, C., Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review. Electrochemical Energy Reviews 2021.
60. Teichert, P.; Eshetu, G. G.; Jahnke, H.; Figgemeier, E., Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries. Batteries 2020, 6 (1), 8.
61. Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F., A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy 2017, 2 (9), 17119.
62. Han, Y.; Liu, B.; Xiao, Z.; Zhang, W.; Wang, X.; Pan, G.; Xia, Y.; Xia, X.; Tu, J., Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives. InfoMat. 2021, 3 (2), 155-174.
63. Assegie, A. A.; Cheng, J.-H.; Kuo, L.-M.; Su, W.-N.; Hwang, B.-J., Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10 (13), 6125-6138.
64. Zhang, J.-G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J., Lithium Metal Anodes with Nonaqueous Electrolytes. Chemical Reviews 2020, 120 (24), 13312-13348.
65. Deng, K.; Han, D.; Ren, S.; Wang, S.; Xiao, M.; Meng, Y., Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. Journal of Materials Chemistry A 2019, 7 (21), 13113-13119.
66. Gao, Y.; Yan, Z.; Gray, J. L.; He, X.; Wang, D.; Chen, T.; Huang, Q.; Li, Y. C.; Wang, H.; Kim, S. H.; Mallouk, T. E.; Wang, D., Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature Materials 2019, 18 (4), 384-389.
67. Lindgren, F.; Xu, C.; Niedzicki, L.; Marcinek, M.; Gustafsson, T.; Björefors, F.; Edström, K.; Younesi, R., SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (24), 15758-15766.
68. Zhu, Y.; Li, Y.; Bettge, M.; Abraham, D. P., Positive Electrode Passivation by LiDFOB Electrolyte Additive in High-Capacity Lithium-Ion Cells. Journal of The Electrochemical Society 2012, 159 (12), A2109-A2117.
69. Li, Y.; Wan, S.; Veith, G. M.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Sun, X.-G., A Novel Electrolyte Salt Additive for Lithium-Ion Batteries with Voltages Greater than 4.7 V. Advanced Energy Materials 2017, 7 (4), 1601397.
70. Jang, S. H.; Lee, K.-J.; Mun, J.; Han, Y.-K.; Yim, T., Chemically-induced cathode–electrolyte interphase created by lithium salt coating on Nickel-rich layered oxides cathode. Journal of Power Sources 2019, 410-411, 15-24.
71. von Aspern, N.; Röser, S.; Rezaei Rad, B.; Murmann, P.; Streipert, B.; Mönnighoff, X.; Tillmann, S. D.; Shevchuk, M.; Stubbmann-Kazakova, O.; Röschenthaler, G.-V.; Nowak, S.; Winter, M.; Cekic-Laskovic, I., Phosphorus additives for improving high voltage stability and safety of lithium ion batteries. Journal of Fluorine Chemistry 2017, 198, 24-33.
72. Zhao, W.; Zheng, G.; Lin, M.; Zhao, W.; Li, D.; Guan, X.; Ji, Y.; Ortiz, G. F.; Yang, Y., Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO2F2 salt-type additive and its working mechanism for LiNi0.5Mn0.25Co0.25O2 cathodes. Journal of Power Sources 2018, 380, 149-157.
73. Shangguan, X.; Xu, G.; Cui, Z.; Wang, Q.; Du, X.; Chen, K.; Huang, S.; Jia, G.; Li, F.; Wang, X.; Lu, D.; Dong, S.; Cui, G., Additive-Assisted Novel Dual-Salt Electrolyte Addresses Wide Temperature Operation of Lithium–Metal Batteries. Small 2019, 15 (16), 1900269.
74. Park, S.-J.; Hwang, J.-Y.; Sun, Y.-K., Trimethylsilyl azide (C3H9N3Si): a highly efficient additive for tailoring fluoroethylene carbonate (FEC) based electrolytes for Li-metal batteries. Journal of Materials Chemistry A 2019, 7 (22), 13441-13448.
75. Liu, H.; Naylor, A. J.; Menon, A. S.; Brant, W. R.; Edström, K.; Younesi, R., Understanding the Roles of Tris(trimethylsilyl) Phosphite (TMSPi) in LiNi0.8Mn0.1Co0.1O2 (NMC811)/Silicon–Graphite (Si–Gr) Lithium-Ion Batteries. 2020, 7 (15), 2000277.
76. Han, J.-G.; Hwang, E.; Kim, Y.; Park, S.; Kim, K.; Roh, D.-H.; Gu, M.; Lee, S.-H.; Kwon, T.-H.; Kim, Y.; Choi, N.-S.; Kim, B.-S., Dual-Functional Electrolyte Additives toward Long-Cycling Lithium-Ion Batteries: Ecofriendly Designed Carbonate Derivatives. ACS Applied Materials & Interfaces 2020, 12 (21), 24479-24487.
77. Yim, T.; Han, Y.-K., Tris(trimethylsilyl) Phosphite as an Efficient Electrolyte Additive To Improve the Surface Stability of Graphite Anodes. ACS Applied Materials \& Interfaces 2017, 9 (38), 32851-32858.
78. Park, S.-J.; Hwang, J.-Y.; Yoon, C. S.; Jung, H.-G.; Sun, Y.-K., Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces 2018, 10 (21), 17985-17993.
79. Hagos, T. T.; Su, W.-N.; Huang, C. J.; Thirumalraj, B.; Chiu, S.-F.; Abrha, L. H.; Hagos, T. M.; Bezabh, H. K.; Berhe, G. B.; Addis, T. W.; Cherng, J.-Y.; Yang, Y.-W.; Hwang, B. J., Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. Journal of Power Sources 2020, 461, 228053.
80. Hagos, T. M.; Hagos, T. T.; Bezabh, H. K.; Berhe, G. B.; Abrha, L. H.; Chiu, S.-F.; Huang, C.-J.; Su, W.-N.; Dai, H.; Hwang, B. J., Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS Applied Energy Materials 2020, 3 (11), 10722-10733.
81. Beyene, T. T. B., H. K.; Weret, M. A.; Hagos, T. M.; Huang, C.-J.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang. B.-J., Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. Journal of The Electrochemical Society, 2019, 166 (8), A1501-A1509.
82. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J.-G., Anode-Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials 2016, 26 (39), 7094-7102.
83. Kong, W.; Li, H.; Huang, X.; Chen, L., Gas evolution behaviors for several cathode materials in lithium-ion batteries. Journal of Power Sources 2005, 142 (1), 285-291.
84. Bernhard, R.; Metzger, M.; Gasteiger, H. A., Gas Evolution at Graphite Anodes Depending on Electrolyte Water Content and SEI Quality Studied by On-Line Electrochemical Mass Spectrometry. Journal of The Electrochemical Society 2015, 162 (10), A1984-A1989.
85. Metzger, M.; Strehle, B.; Solchenbach, S.; Gasteiger, H. A., Origin of H2Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation. Journal of The Electrochemical Society 2016, 163 (5), A798-A809.
86. Guéguen, A.; Streich, D.; He, M.; Mendez, M.; Chesneau, F. F.; Novák, P.; Berg, E. J., Decomposition of LiPF6in High Energy Lithium-Ion Batteries Studied with Online Electrochemical Mass Spectrometry. Journal of The Electrochemical Society 2016, 163 (6), A1095-A1100.
87. Schwenke, K. U.; Solchenbach, S.; Demeaux, J.; Lucht, B. L.; Gasteiger, H. A., The Impact of CO2 Evolved from VC and FEC during Formation of Graphite Anodes in Lithium-Ion Batteries. Journal of The Electrochemical Society 2019, 166 (10), A2035-A2047.
88. Freiberg, A. T. S.; Sicklinger, J.; Solchenbach, S.; Gasteiger, H. A., Li2CO3 decomposition in Li-ion batteries induced by the electrochemical oxidation of the electrolyte and of electrolyte impurities. Electrochimica Acta 2020, 346, 136271.
89. Yan, C.; Cheng, X.-B.; Tian, Y.; Chen, X.; Zhang, X.-Q.; Li, W.-J.; Huang, J.-Q.; Zhang, Q., Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition. 2018, 30 (25), 1707629.
90. Hagos, T. M.; Berhe, G. B.; Hagos, T. T.; Bezabh, H. K.; Abrha, L. H.; Beyene, T. T.; Huang, C.-J.; Yang, Y.-W.; Su, W.-N.; Dai, H.; Hwang, B.-J., Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochimica Acta 2019, 316, 52-59.
91. Hagos, T. T.; Thirumalraj, B.; Huang, C.-J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S.-F.; Su, W.-N.; Hwang, B.-J., Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces 2019, 11 (10), 9955-9963.
92. Genovese, M.; Louli, A. J.; Weber, R.; Martin, C.; Taskovic, T.; Dahn, J. R., Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries. Journal of The Electrochemical Society 2019, 166 (14), A3342-A3347.
93. Weber, R.; Genovese, M.; Louli, A. J.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J. R., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy 2019, 4 (8), 683-689.
94. Xue, W.; Shi, Z.; Huang, M.; Feng, S.; Wang, C.; Wang, F.; Lopez, J.; Qiao, B.; Xu, G.; Zhang, W.; Dong, Y.; Gao, R.; Shao-Horn, Y.; Johnson, J. A.; Li, J., FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Energy & Environmental Science 2020, 13 (1), 212-220.
95. Sahalie, N. A.; Assegie, A. A.; Su, W.-N.; Wondimkun, Z. T.; Jote, B. A.; Thirumalraj, B.; Huang, C.-J.; Yang, Y.-W.; Hwang, B.-J., Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. Journal of Power Sources 2019, 437, 226912.
96. Metzger, M.; Marino, C.; Sicklinger, J.; Haering, D.; Gasteiger, H. A., Anodic Oxidation of Conductive Carbon and Ethylene Carbonate in High-Voltage Li-Ion Batteries Quantified by On-Line Electrochemical Mass Spectrometry. J. Electrochem. Soc. 2015, 162 (7), A1123-A1134.
97. Galushkin, N. Е.; Yazvinskaya, N. N.; Galushkin, D. N., Mechanism of Gases Generation during Lithium-Ion Batteries Cycling. Journal of The Electrochemical Society 2019, 166 (6), A897-A908.
98. Strehle, B.; Solchenbach, S.; Metzger, M.; Schwenke, K. U.; Gasteiger, H. A., The Effect of CO2 on Alkyl Carbonate Trans-Esterification during Formation of Graphite Electrodes in Li-Ion Batteries. Journal of The Electrochemical Society 2017, 164 (12), A2513-A2526.
99. Ye, H.; Xin, S.; Yin, Y.-X.; Li, J.-Y.; Guo, Y.-G.; Wan, L.-J., Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. J. the Am. Chem. Soc. 2017, 139 (16), 5916-5922.
100. Yang, Y.; Davies, D. M.; Yin, Y.; Borodin, O.; Lee, J. Z.; Fang, C.; Olguin, M.; Zhang, Y.; Sablina, E. S.; Wang, X.; Rustomji, C. S.; Meng, Y. S., High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes. Joule 2019, 3 (8), 1986-2000.
101. Woo, J.-J.; Maroni, V. A.; Liu, G.; Vaughey, J. T.; Gosztola, D. J.; Amine, K.; Zhang, Z., Symmetrical Impedance Study on Inactivation Induced Degradation of Lithium Electrodes for Batteries Beyond Lithium-Ion. Journal of the American Chemical Society 2014, 161 (5), A827-A830.
102. Milien, M. S.; Beyer, H.; Beichel, W.; Klose, P.; Gasteiger, H. A.; Lucht, B. L.; Krossing, I., Lithium Bis(2,2,2-trifluoroethyl)phosphate Li[O2P(OCH2CF3)2]: A High Voltage Additive for LNMO/Graphite Cells. Journal of the American Chemical Society 2018, 165 (11), A2569-A2576.
103. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews 2017, 117 (15), 10403-10473.
104. Li, L.; Li, S.; Lu, Y., Suppression of dendritic lithium growth in lithium metal-based batteries. Chemical Communications 2018, 54 (50), 6648-6661.
105. Zheng, G.; Xiang, Y.; Chen, S.; Ganapathy, S.; Verhallen, T. W.; Liu, M.; Zhong, G.; Zhu, J.; Han, X.; Wang, W.; Zhao, W.; Wagemaker, M.; Yang, Y., Additives synergy for stable interface formation on rechargeable lithium metal anodes. Energy Storage Materials 2019.
106. Aiken, C. P.; Xia, J.; Wang, D. Y.; Stevens, D. A.; Trussler, S.; Dahn, J. R., An Apparatus for the Study of In Situ Gas Evolution in Li-Ion Pouch Cells. Journal of the Electrochemical Society 2014, 161 (10), A1548-A1554.
107. Self, J.; Aiken, C. P.; Petibon, R.; Dahn, J. R., Survey of Gas Expansion in Li-Ion NMC Pouch Cells. Journal of the Electrochemical Society 2015, 162 (6), A796-A802.
108. Jung, R.; Strobl, P.; Maglia, F.; Stinner, C.; Gasteiger, H. A., Temperature Dependence of Oxygen Release from LiNi0.6Mn0.2Co0.2O2 (NMC622) Cathode Materials for Li-Ion Batteries. Journalof the Electrochemical Society 2018, 165 (11), A2869-A2879.
109. Li, W.; Song, B.; Manthiram, A., High-voltage positive electrode materials for lithium-ion batteries. Chemical Society Reviews 2017, 46 (10), 3006-3059.
110. Guéguen, A.; Bolli, C.; Mendez, M. A.; Berg, E. J., Elucidating the Reactivity of TMSPi and TMSPa Additives in Carbonate Electrolytes - A Comparative OEMS Study. ACS Applied Energy Materials 2019.
111. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews 2004, 104 (10), 4303-4418.
112. Metzger, M.; Strehle, B.; Solchenbach, S.; Gasteiger, H. A., Origin of H2 Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation. Journal of The Electrochemical Society 2016, 163 (5), A798-A809.
113. Zhang, S. S., Insight into the Gassing Problem of Li-ion Battery. Frontiers in Energy Research 2014, 2 (59).
114. Kriston, A.; Adanouj, I.; Ruiz, V.; Pfrang, A., Quantification and simulation of thermal decomposition reactions of Li-ion battery materials by simultaneous thermal analysis coupled with gas analysis. Journal of Power Sources 2019, 435, 226774.
115. Li, Y.; Qi, Y., Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface. Energy & Environmental Science 2019, 12 (4), 1286-1295.
116. Jin, Y.; Kneusels, N.-J. H.; Magusin, P. C. M. M.; Kim, G.; Castillo-Martínez, E.; Marbella, L. E.; Kerber, R. N.; Howe, D. J.; Paul, S.; Liu, T.; Grey, C. P., Identifying the Structural Basis for the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbonate. Journal of the American Chemical Society 2017, 139 (42), 14992-15004.
117. He, M.; Boulet-Roblin, L.; Borel, P.; Tessier, C.; Novák, P.; Villevieille, C.; Berg, E. J., Effects of Solvent, Lithium Salt, and Temperature on Stability of Carbonate-Based Electrolytes for 5.0 V LiNi0.5Mn1.5O4Electrodes. Journal of the Electrochemical Society 2015, 163 (2), A83-A89.
118. Bi, Y.; Wang, T.; Liu, M.; Du, R.; Yang, W.; Liu, Z.; Peng, Z.; Liu, Y.; Wang, D.; Sun, X., Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance. RSC Advances 2016, 6 (23), 19233-19237.
119. Seo, D. M.; Chalasani, D.; Parimalam, B. S.; Kadam, R.; Nie, M.; Lucht, B. L., Reduction Reactions of Carbonate Solvents for Lithium Ion Batteries. ECS Electrochemical Letters 2014, 3 (9), A91-A93.
120. Xu, S. D.; Zhuang, Q. C.; Wang, J.; Xu, Y. Q.; Zhu, Y. B., New Insight into Vinylethylene Carbonate as a Film Forming Additive to Ethylene Carbonate-Based Electrolytes for Lithium-Ion Batteries. International Journal of Electrochemical Science 2013, 8, 8058-8076.
121. Pritzl, D.; Solchenbach, S.; Wetjen, M.; Gasteiger, H. A., Analysis of Vinylene Carbonate (VC) as Additive in Graphite/LiNi0.5Mn1.5O4Cells. Journal of the Electrochemical Society 2017, 164 (12), A2625-A2635.
122. Hobold, G. M.; Khurram, A.; Gallant, B. M., Operando Gas Monitoring of Solid Electrolyte Interphase Reactions on Lithium. Chemistry of Materials 2020, 32 (6), 2341-2352.
123. Young, J.; Smeu, M., Ethylene Carbonate-Based Electrolyte Decomposition and Solid–Electrolyte Interphase Formation on Ca Metal Anodes. Journal of Physical Chemistry Letters 2018, 9 (12), 3295-3300.
124. Gachot, G.; Grugeon, S.; Armand, M.; Pilard, S.; Guenot, P.; Tarascon, J.-M.; Laruelle, S., Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. Journal of Power Sources 2008, 178 (1), 409-421.
125. Solchenbach, S.; Metzger, M.; Egawa, M.; Beyer, H.; Gasteiger, H. A., Quantification of PF5 and POF3 from Side Reactions of LiPF6 in Li-Ion Batteries. Joutnal of the Electrochemical Society 2018, 165 (13), A3022-A3028.
126. An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52-76.
127. Nakajima, T.; Hirobayashi, Y.; Takayanagi, Y.; Ohzawa, Y., Reactions of metallic Li or LiC6 with organic solvents for lithium ion battery. Journal of Power Sources 2013, 243, 581-584.
128. Li, T.; Yuan, X.-Z.; Zhang, L.; Song, D.; Shi, K.; Bock, C., Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries. Electrochemical Energy Reviews 2019.
129. Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G., Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes. Journal of the Americal Chemical Society 2011, 133 (20), 8040-8047.
130. Yabuuchi, N.; Yoshii, K.; Myung, S.-T.; Nakai, I.; Komaba, S., Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. Journal of the American Chemical Society 2011, 133 (12), 4404-4419.
131. Balaish, M.; Kraytsberg, A.; Ein-Eli, Y., A critical review on lithium–air battery electrolytes. Physical Chemistry Chemical Physics 2014, 16 (7), 2801-2822.
132. Lian, F.; Li, Y.; He, Y.; Guan, H.; Yan, K.; Qiu, W.; Chou, K.-C.; Axmann, P.; Wohlfahrt-Mehrens, M., Preparation of LiBOB via rheological phase method and its application to mitigate voltage fade of Li1.16[Mn0.75Ni0.25]0.84O2 cathode. RSC Advances 2015, 5 (105), 86763-86770.
133. Wandt, J.; Freiberg, A. T. S.; Ogrodnik, A.; Gasteiger, H. A., Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Materials Today 2018, 21 (8), 825-833.
134. Freiberg, A. T. S.; Roos, M. K.; Wandt, J.; de Vivie-Riedle, R.; Gasteiger, H. A., Singlet Oxygen Reactivity with Carbonate Solvents Used for Li-Ion Battery Electrolytes. Journal of Physical Chemistry A 2018, 122 (45), 8828-8839.
135. Xing, L.; Li, W.; Wang, C.; Gu, F.; Xu, M.; Tan, C.; Yi, J., Theoretical Investigations on Oxidative Stability of Solvents and Oxidative Decomposition Mechanism of Ethylene Carbonate for Lithium Ion Battery Use. Journal of Physical Chemistry B 2009, 113 (52), 16596-16602.
136. Wilken, S.; Treskow, M.; Scheers, J.; Johansson, P.; Jacobsson, P., Initial stages of thermal decomposition of LiPF6-based lithium ion battery electrolytes by detailed Raman and NMR spectroscopy. RSC Advances 2013, 3 (37), 16359-16364.
137. Schultz, C.; Vedder, S.; Streipert, B.; Winter, M.; Nowak, S., Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS. RSC Advances 2017, 7 (45), 27853-27862.
138. Lamb, J.; Orendorff, C. J.; Roth, E. P.; Langendorf, J., Studies on the Thermal Breakdown of Common Li-Ion Battery Electrolyte Components. Journal of The Electrochemical Society 2015, 162 (10), A2131-A2135.
139. Leung, K.; Soto, F.; Hankins, K.; Balbuena, P. B.; Harrison, K. L., Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces. Journal of Physical Chememistry C 2016, 120 (12), 6302-6313.
140. Onuki, M.; Kinoshita, S.; Sakata, Y.; Yanagidate, M.; Otake, Y.; Ue, M.; Deguchi, M., Identification of the Source of Evolved Gas in Li-Ion Batteries Using #2#1 -labeled Solvents. The Journal of Electrochemical Society 2008, 155 (11), A794-A797.
141. Thirumalraj, B.; Hagos, T. T.; Huang, C.-J.; Teshager, M. A.; Cheng, J.-H.; Su, W.-N.; Hwang, B.-J., Nucleation and Growth Mechanism of Lithium Metal Electroplating. Joutnal of the Americaln Chemical Society 2019, 141 (46), 18612-18623.
142. Ramos-Sanchez, G.; Soto, F. A.; Martinez de la Hoz, J. M.; Liu, Z.; Mukherjee, P. P.; El-Mellouhi, F.; Seminario, J. M.; Balbuena, P. B., Computational Studies of Interfacial Reactions at Anode Materials: Initial Stages of the Solid-Electrolyte-Interphase Layer Formation. Journal of Electrochemical Energy Conversion and Storage 2016, 13 (3).
143. Spotnitz, R.; Franklin, J., Abuse behavior of high-power, lithium-ion cells. Journal of Power Sources 2003, 113 (1), 81-100.
144. Liu, T.; Lin, L.; Bi, X.; Tian, L.; Yang, K.; Liu, J.; Li, M.; Chen, Z.; Lu, J.; Amine, K.; Xu, K.; Pan, F., In situ quantification of interphasial chemistry in Li-ion battery. Nature Nanotechnology 2019, 14 (1), 50-56.
145. Henschel, J.; Peschel, C.; Klein, S.; Horsthemke, F.; Winter, M.; Nowak, S., Clarification of Decomposition Pathways in a State-of-the-Art Lithium Ion Battery Electrolyte through 13C-Labeling of Electrolyte Components. Angewandte Chemie International Edition 2020, 59 (15), 6128-6137.
146. Zhang, X.-Q.; Cheng, X.-B.; Chen, X.; Yan, C.; Zhang, Q., Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials 2017, 27 (10), 1605989.
147. Liu, L.; Gu, S.; Wang, S.; Zhang, X.; Chen, S., A LiPO2F2/LiPF6 dual-salt electrolyte enabled stable cycling performance of nickel-rich lithium ion batteries. RSC Advances 2020, 10 (3), 1704-1710.
148. Hagos, T. T.; Thirumalraj, B.; Huang, C.-J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S.-F.; Su, W.-N.; Hwang, B.-J., Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Appl. Mater. & Interfaces 2019, 11 (10), 9955-9963.
149. Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H., Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chemical Reviews 2020, 120 (14), 6820-6877.
150. Veith, G. M.; Doucet, M.; Baldwin, J. K.; Sacci, R. L.; Fears, T. M.; Wang, Y.; Browning, J. F., Direct Determination of Solid-Electrolyte Interphase Thickness and Composition as a Function of State of Charge on a Silicon Anode. The Journal of Physical Chemistry C 2015, 119 (35), 20339-20349.
151. Mandli, A. R.; Kaushik, A.; Patil, R. S.; Naha, A.; Hariharan, K. S.; Kolake, S. M.; Han, S.; Choi, W., Analysis of the effect of resistance increase on the capacity fade of lithium ion batteries. International Journal of Energy Research 2019, 43 (6), 2044-2056.
152. Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials 2018, 4, 15.
153. Hausbrand, R. J., W.,, Reaction Layer Formation and Charge Transfer at Li-Ion Cathode—Electrolyte Interfaces: Concepts and Results Obtained by a Surface Science Approach. Surface Science and Electrochemistry 2018, 232 - 245.
154. Soto, F. A.; Ma, Y.; Martinez de la Hoz, J. M.; Seminario, J. M.; Balbuena, P. B., Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries. Chemistry of Materials 2015, 27 (23), 7990-8000.
155. Liu Y.; Xiong S.; Wang J.; Jiao X.; Li S.; Zhang C.; Song Z.; Song J., Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Materials 2019, 19, 24 - 30.
156. Zhang, R.; Chen, X.-R.; Chen, X.; Cheng, X.-B.; Zhang, X.-Q.; Yan, C.; Zhang, Q., Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. Angewandte Chemie International Edition 2017, 56 (27), 7764-7768.
157. Yan, K.; Wang, J.; Zhao, S.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G., Temperature-Dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes. Angewandte Chemie International Edition 2019, 58 (33), 11364-11368.
158. Yang, Y.; Davies, D. M.; Yin, Y.; Borodin, O.; Lee, J. Z.; Fang, C.; Olguin, M.; Zhang, Y.; Sablina, E. S.; Wang, X.; Rustomji, C. S.; Meng, Y. S., High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes. Joule 2019, 3 (8), 1986 - 2000.
159. Yang, Y.; Davies, D. M.; Yin, Y.; Borodin, O.; Lee, J. Z.; Fang, C.; Olguin, M.; Zhang, Y.; Sablina, E. S.; Wang, X.; Rustomji, C. S.; Meng, Y. S., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52 - 76.
160. Wondimkun, Z. T.; Tegegne, W. A.; Jiang, S.-K.; Huang, C.-J.; Sahalie, N. A.; Weret, M. A.; Hsua, J.-Y.; Hsieh, P.-L.; Huang, Y.-S.; Wu, S.-H.; Su, W.-N.; Hwang, B. J., Highly-lithiophilic Ag@PDA-GO film to Suppress Dendrite Formation on Cu Substrate in Anode-free Lithium Metal Batteries. Energy Storage Materials 2021, 35, 334 - 344.
161. Guo, W.; Meng, Y.; Hu, Y.; Wu, X.; Ju, Z.; Zhuang, Q., Surface and Interface Modification of Electrode Materials for Lithium-Ion Batteries With Organic Liquid Electrolyte. Frontiers in Energy Research 2020, 8 (170).
162. Kim H. R.; Choi W. M., Graphene modified copper current collector for enhanced electrochemical performance of Li-ion battery. Scripta Materialia 2018, 146, 100 - 104.
163. Cui, S.; Zhai, P.; Yang, W.; Wei, Y.; Xiao, J.; Deng, L.; Gong, Y., Large-Scale Modification of Commercial Copper Foil with Lithiophilic Metal Layer for Li Metal Battery. Advanced sceinece news 2020, 16 (5), 1905620.
164. Yang, J., Shkrob, I., Liu, K., Connell, J., Rago, N. L. D., Zhang, Z., Liao, C., 4-(Trimethylsilyl) Morpholine as a Multifunctional Electrolyte Additive in High Voltage Lithium Ion Batteries. Journal of the Electrochemical Society 2020, 167 070533.
165. Li, J.; Xing, L.; Zhang, R.; Chen, M.; Wang, Z.; Xu, M.; Li, W., Tris(trimethylsilyl)borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte. Journal of Power Sources 2015, 285, 360 - 366.
166. Guo, Y.; Li, D.; Xiong, R.; Li, H., Investigation of the temperature-dependent behaviours of Li metal anode. Chemical Communications 2019, 55 (66), 9773-9776.
167. Gong, C.; Pu, S. D.; Gao, X.; Yang, S.; Liu, J.; Ning, Z.; Rees, G. J.; Capone, I.; Pi, L.; Liu, B.; Hartley, G. O.; Fawdon, J.; Luo, J.; Pasta, M.; Grovenor, C. R. M.; Bruce, P. G.; Robertson, A. W., Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy. Advanced Energy Materials 2021, 11 (10), 2003118.
168. Pang, Q.; Liang, X.; Kochetkov, I. R.; Hartmann, P.; Nazar, L. F., Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ. Angewandte Chemie International Edition 2018, 57 (31), 9795-9798.
169. Shi, Y.; Wan, J.; Liu, G.-X.; Zuo, T.-T.; Song, Y.-X.; Liu, B.; Guo, Y.-G.; Wen, R.; Wan, L.-J., Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi-Solid-State Lithium-Metal Batteries. Angewandte Chemie International Edition 2020, 59 (41), 18120-18125.
170. Umamaheswari. J., T. R. G., Mary E. F., , Review—Lithium Plating Detection Methods in Li-Ion Batteries. Journal of The Electrochemical Society 167, 160552.
171. Li, Q.; Jiao, S.; Luo, L.; Ding, M. S.; Zheng, J.; Cartmell, S. S.; Wang, C. M.; Xu, K.; Zhang, J. G.; Xu, W., Wide-Temperature Electrolytes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2017, 9 (22), 18826-18835.
172. Nanda, S.; Gupta, A.; Manthiram, A., Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries. 2021, 11 (2), 2000804.
173. Xu, C.; Lindgren, F.; Philippe, B.; Gorgoi, M.; Björefors, F.; Edström, K.; Gustafsson, T., Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive. Chemistry of Materials 2015, 27 (7), 2591-2599.
174. Schroder, K.; Alvarado, J.; Yersak, T. A.; Li, J.; Dudney, N.; Webb, L. J.; Meng, Y. S.; Stevenson, K. J., The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes. Chemistry of Materials 2015, 27 (16), 5531-5542.
175. Chen, L.; Wang, K.; Xie, X.; Xie, J., Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. Journal of Power Sources 2007, 174 (2), 538-543.
176. Peng, Z.; Cao, X.; Gao, P.; Jia, H.; Ren, X.; Roy, S.; Li, Z.; Zhu, Y.; Xie, W.; Liu, D.; Li, Q.; Wang, D.; Xu, W.; Zhang, J.-G., High-Power Lithium Metal Batteries Enabled by High-Concentration Acetonitrile-Based Electrolytes with Vinylene Carbonate Additive. Advanced Function Materials 2020, 30 (24), 2001285.
177. Dahee, J. H., L.; Taeyeong, H.; Seokwoo, K.; Myung-Hyun, R.; and YongMin, L.;, Effect of Lithium Nitrate (LiNO3) on Lithium Metal Secondary Batteries As a Lithium Metal Stabilizing Electrolyte Additive. The Electrochemical Society 2016, MA2016-02 594.
178. Piao, N.; Liu, S.; Zhang, B.; Ji, X.; Fan, X.; Wang, L.; Wang, P.-F.; Jin, T.; Liou, S.-C.; Yang, H.; Jiang, J.; Xu, K.; Schroeder, M. A.; He, X.; Wang, C., Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters 2021, 1839-1848.
179. Liu, J.; Song, X.; Zhou, L.; Wang, S.; Song, W.; Liu, W.; Long, H.; Zhou, L.; Wu, H.; Feng, C.; Guo, Z., Fluorinated phosphazene derivative – A promising electrolyte additive for high voltage lithium ion batteries: From electrochemical performance to corrosion mechanism. Nano Energy 2018, 46, 404-414.
180. Jurng, S.; Brown, Z. L.; Kim, J.; Lucht, B. L., Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy & Environmental Science 2018, 11 (9), 2600-2608.
181. Tamene Tadesse Beyene; Hailemariam Kassa Bezabh; Misganaw Adigo Weret; Teklay Mezgebe Hagos; Chen-Jui Huang; Chia-Hsin Wang; Wei-Nien Su; Hongjie Dai; Bing-Joe Hwang, Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. Journal of The Electrochemical Society 2019, 166 (8), A1501-A1509.
182. Nilsson, V.; Kotronia, A.; Lacey, M.; Edström, K.; Johansson, P., Highly Concentrated LiTFSI–EC Electrolytes for Lithium Metal Batteries. ACS Applied Energy Materials 2020, 3 (1), 200-207.
183. Arya, A.; Saykar, N. G.; Sharma, A. L., Impact of shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free-standing solid polymeric separator for energy storage/conversion devices. 2019, 136 (16), 47361.
1. Shitaw, K. N.; Yang, S.-C.; Jiang, S.-K.; Huang, C.-J.; Sahalie, N. A.; Nikodimos, Y.; Weldeyohannes, H. H.; Wang, C.-H.; Wu, S.-H.; Su, W.-N.; Hwang, B. J., Decoupling Interfacial Reactions at Anode and Cathode by Combining Online Electrochemical Mass Spectroscopy with Anode-Free Li-Metal Battery. Adv. Funct. materials 2021, 31 (6), 2006951.
2. Mukrimin Sevket, G.; Yalcin, T., Classification and assessment of energy storage systems. Renewable and Sustainable Energy Reviews 2017, 75, 1187-1197.
3. Ould Amrouche, S.; Rekioua, D.; Rekioua, T.; Bacha, S., Overview of energy storage in renewable energy systems. International Journal of Hydrogen Energy 2016, 41 (45), 20914-20927.
4. Hosseini, S. E.; Wahid, M. A., Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews 2016, 57, 850-866.
5. Guney, M. S.; Tepe, Y., Classification and assessment of energy storage systems. Renewable and Sustainable Energy Reviews 2017, 75, 1187-1197.
6. Kordesch, K.; Taucher-Mautner, W., HISTORY | Primary Batteries. In Encyclopedia of Electrochemical Power Sources, Garche, J., Ed. Elsevier: Amsterdam, 2009; pp 555-564.
7. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P., Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials 1998, 10 (10), 725-763.
8. May, G. J.; Davidson, A.; Monahov, B., Lead batteries for utility energy storage: A review. Journal of Energy Storage 2018, 15, 145-157.
9. Chen, S.; Wen, K.; Fan, J.; Bando, Y.; Golberg, D., Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. Journal of Materials Chemistry A 2018, 6 (25), 11631-11663.
10. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
11. Chen, Z.; Amine, R.; Ma, Z.-F.; Amine, K., Interfacial reactions in lithium batteries. Journal of Physics D: Applied Physics 2017, 50 (30), 303001.
12. Bhatt, M. D.; O'Dwyer, C., Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical Chemistry Chemical Physics 2015, 17 (7), 4799-4844.
13. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature Nanotechnology 2017, 12 (3), 194-206.
14. Ye, H.; Xin, S.; Yin, Y.-X.; Li, J.-Y.; Guo, Y.-G.; Wan, L.-J., Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. Journal of the American Chemical Society 2017, 139 (16), 5916-5922.
15. Liu, B. Z., J.-G.; Xu., W., Advancing Lithium Metal Batteries. Joule 2018, 2 (5), 833 - 845.
16. Li, Z.; Huang, J.; Yann Liaw, B.; Metzler, V.; Zhang, J., A review of lithium deposition in lithium-ion and lithium metal secondary batteries. Journal of Power Sources 2014, 254, 168-182.
17. Aurbach, D.; Cohen, Y., The Application of Atomic Force Microscopy for the Study of Li Deposition Processes. Journal of The Electrochemical Society 1996, 143 (11), 3525-3532.
18. Puthusseri, D.; Parmananda, M.; Mukherjee, P. P.; Pol, V. G., Probing the Thermal Safety of Li Metal Batteries. Journal of The Electrochemical Society 2020, 167, 120513.
19. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J., Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science 2016, 9 (6), 1955-1988.
20. Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C.; Rodriguez-Martínez, L. M.; Armand, M., Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angewandte Chemie International Edition 2018, 57 (46), 15002-15027.
21. Amit, M.; Akansha, M.; Soumen, B.; Shweta, J. M.; Nagaraj, P. S.; Shyam, S. S.; Mallikarjuna, N. N.; Tejraj, M. A., Electrode materials for lithium-ion batteries. Materials Science for Energy Technologies 2018, 1 (2), 182-187.
22. Di Lecce, D.; Verrelli, R.; Hassoun, J., Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations. Green Chemistry 2017, 19 (15), 3442-3467.
23. Tasaki, K., Solvent Decompositions and Physical Properties of Decomposition Compounds in Li-Ion Battery Electrolytes Studied by DFT Calculations and Molecular Dynamics Simulations. Journl of Physical Chemistry B 2005, 109 (7), 2920-2933.
24. Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials 2018, 4 (1), 15.
25. Phadke, S.; Cao, M.; Anouti, M., Approaches to Electrolyte Solvent Selection for Poly-Anthraquinone Sulfide Organic Electrode Material. ChemSusChem 2018, 11 (5), 965-974.
26. Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H.-K., Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries. Chemistry—A European Journal 2011, 17 (51), 14326-14346.
27. Appetecchi, G. B., Safer electrolyte components for rechargeable batteries %J Physical Sciences Reviews. 2019, 4 (3).
28. Liu, Z.; Chai, J.; Xu, G.; Wang, Q.; Cui, G., Functional lithium borate salts and their potential application in high performance lithium batteries. Coordination Chemistry Reviews 2015, 292, 56-73.
29. Younesi, R.; Veith, G. M.; Johansson, P.; Edström, K.; Vegge, T., Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy & Environmental Science 2015, 8 (7), 1905-1922.
30. Mosallanejad, B., Phthalimide Derivatives: New Promising Additives for Functional Electrolyte in Lithium-ion Batteries. Chemical Methodologies 3 (2), 261-275.
31. Qiao, L.; Cui, Z.; Chen, B.; Xu, G.; Zhang, Z.; Ma, J.; Du, H.; Liu, X.; Huang, S.; Tang, K.; Dong, S.; Zhou, X.; Cui, G., A promising bulky anion based lithium borate salt for lithium metal batteries. Chemical Science 2018, 9 (14), 3451-3458.
32. Dong, Y.; Young, B. T.; Zhang, Y.; Yoon, T.; Heskett, D. R.; Hu, Y.; Lucht, B. L., Effect of Lithium Borate Additives on Cathode Film Formation in LiNi0.5Mn1.5O4/Li Cells. ACS Applied Materials & Interfaces 2017, 9 (24), 20467-20475.
33. Yang, G.; Shi, J.; Shen, C.; Wang, S.; Xia, L.; Hu, H.; Luo, H.; Xia, Y.; Liu, Z., Improving the cyclability performance of lithium-ion batteries by introducing lithium difluorophosphate (LiPO2F2) additive. RSC Advances 2017, 7 (42), 26052-26059.
34. Dong, Q.; Guo, F.; Cheng, Z.; Mao, Y.; Huang, R.; Li, F.; Dong, H.; Zhang, Q.; Li, W.; Chen, H.; Luo, Z.; Shen, Y.; Wu, X.; Chen, L., Insights into the Dual Role of Lithium Difluoro(oxalato)borate Additive in Improving the Electrochemical Performance of NMC811||Graphite Cells. ACS Applied Energy Materials 2020, 3 (1), 695-704.
35. Shen, X.; Zhang, X.-Q.; Ding, F.; Huang, J.-Q.; Xu, R.; Chen, X.; Yan, C.; Su, F.-Y.; Chen, C.-M.; Liu, X.; Zhang, Q., Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect. Energy Material Advances 2021, 2021, 1205324.
36. Lei, W.; Ziyue, Z.; Xiao, Y.; Feng, H.; Lei, W.; Wenbin, L.; Ji, L.; Shi Xue, D., Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Materials 2018, 14, 22-48.
37. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 513-537.
38. Li, Q.; Pan, H.; Li, W.; Wang, Y.; Wang, J.; Zheng, J.; Yu, X.; Li, H.; Chen, L., Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. ACS Energy Letters 2018, 3 (9), 2259-2266.
39. Ghazi, Z. A.; Sun, Z.; Sun, C.; Qi, F.; An, B.; Li, F.; Cheng, H.-M., Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries. Small 2019, 15 (32), 1900687.
40. Yang, H.; Guo, C.; Naveed, A.; Lei, J.; Yang, J.; Nuli, Y.; Wang, J., Recent progress and perspective on lithium metal anode protection. Energy Storage Materials 2018, 14, 199-221.
41. Wu, F.; Maier, J.; Yu, Y., Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews 2020, 49 (5), 1569-1614.
42. Li, Z.; Xu, N.; Sha, Y.; Ji, J.; Liu, T.; Yan, L.; He, Y.; Zheng, J.; Ling, M.; Lu, Y.; Liang, C., Chitosan oligosaccharide derived polar host for lithium deposition in lithium metal batteries. Sustainable Materials and Technologies 2020, 24, e00158.
43. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnology 2017, 12, 194.
44. Guo, Y.; Li, H.; Zhai, T., Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. Advanced Materials 2017, 29 (29), 1700007.
45. Chen, K.-H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P., Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. Journal of Materials Chemistry A 2017, 5 (23), 11671-11681.
46. Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M.; Mullins, C. B., Electrode Degradation in Lithium-Ion Batteries. ACS Nano 2020, 14 (2), 1243-1295.
47. Gunnarsdóttir, A. B.; Amanchukwu, C. V.; Menkin, S.; Grey, C. P., Noninvasive In Situ NMR Study of “Dead Lithium” Formation and Lithium Corrosion in Full-Cell Lithium Metal Batteries. Journal of the American Chemical Society 2020, 142 (49), 20814-20827.
48. Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M.-H.; Alvarado, J.; Schroeder, M. A.; Yang, Y.; Lu, B.; Williams, N.; Ceja, M.; Yang, L.; Cai, M.; Gu, J.; Xu, K.; Wang, X.; Meng, Y. S., Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572 (7770), 511-515.
49. Zhang, Y.; Luo, W.; Wang, C.; Li, Y.; Chen, C.; Song, J.; Dai, J.; Hitz, E. M.; Xu, S.; Yang, C.; Wang, Y.; Hu, L., High-capacity, low-tortuosity, and channel-guided lithium metal anode. 2017, 114 (14), 3584-3589.
50. Kanamura, K.; Tamura, H.; Shiraishi, S.; Takehara, Z. i., XPS Analysis of Lithium Surfaces Following Immersion in Various Solvents Containing LiBF4. Journal of The Electrochemical Society 1995, 142 (2), 340-347.
51. Xu, R.; Zhang, X.-Q.; Cheng, X.-B.; Peng, H.-J.; Zhao, C.-Z.; Yan, C.; Huang, J.-Q., Artificial Soft–Rigid Protective Layer for Dendrite-Free Lithium Metal Anode. Advanced Function Materials 2018, 28 (8), 1705838.
52. Han, J.-G.; Hwang, C.; Kim, S. H.; Park, C.; Kim, J.; Jung, G. Y.; Baek, K.; Chae, S.; Kang, S. J.; Cho, J.; Kwak, S. K.; Song, H.-K.; Choi, N.-S., An Antiaging Electrolyte Additive for High-Energy-Density Lithium-Ion Batteries. Advanced Energy Materials 2020, 10 (20), 2000563.
53. Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A., Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon. Journal of Physical Chemistry Letters 2017, 8 (19), 4820-4825.
54. Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A., Ageing mechanisms in lithium-ion batteries. Journal of Power Sources 2005, 147 (1), 269-281.
55. Yoon, T.; Lee, T.; Soon, J.; Jeong, H.; Jurng, S.; Ryu, J. H.; Oh, S. M., The Investigation of Electrolyte Oxidation and Film Deposition Characteristics at High Potentials in a Carbonate-Based Electrolyte Using Pt Electrode. Journal of The Electrochemical Society 2018, 165 (5), A1095-A1098.
56. Gialampouki, M. A.; Hashemi, J.; Peterson, A. A., The Electrochemical Mechanisms of Solid–Electrolyte Interphase Formation in Lithium-Based Batteries. The Journal of Physical Chemistry C 2019, 123 (33), 20084-20092.
57. Han, J.-G.; Kim, K.; Lee, Y.; Choi, N.-S., Scavenging Materials to Stabilize LiPF6-Containing Carbonate-Based Electrolytes for Li-Ion Batteries. Advanced Materials 2019, 31 (20), 1804822.
58. Hundekar, P.; Jain, R.; Lakhnot, A. S.; Koratkar, N., Recent advances in the mitigation of dendrites in lithium-metal batteries. Journal of Applied Physics 2020, 128 (1), 010903.
59. Pang, Y.; Pan, J.; Yang, J.; Zheng, S.; Wang, C., Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review. Electrochemical Energy Reviews 2021.
60. Teichert, P.; Eshetu, G. G.; Jahnke, H.; Figgemeier, E., Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries. Batteries 2020, 6 (1), 8.
61. Liang, X.; Pang, Q.; Kochetkov, I. R.; Sempere, M. S.; Huang, H.; Sun, X.; Nazar, L. F., A facile surface chemistry route to a stabilized lithium metal anode. Nature Energy 2017, 2 (9), 17119.
62. Han, Y.; Liu, B.; Xiao, Z.; Zhang, W.; Wang, X.; Pan, G.; Xia, Y.; Xia, X.; Tu, J., Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives. InfoMat. 2021, 3 (2), 155-174.
63. Assegie, A. A.; Cheng, J.-H.; Kuo, L.-M.; Su, W.-N.; Hwang, B.-J., Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10 (13), 6125-6138.
64. Zhang, J.-G.; Xu, W.; Xiao, J.; Cao, X.; Liu, J., Lithium Metal Anodes with Nonaqueous Electrolytes. Chemical Reviews 2020, 120 (24), 13312-13348.
65. Deng, K.; Han, D.; Ren, S.; Wang, S.; Xiao, M.; Meng, Y., Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. Journal of Materials Chemistry A 2019, 7 (21), 13113-13119.
66. Gao, Y.; Yan, Z.; Gray, J. L.; He, X.; Wang, D.; Chen, T.; Huang, Q.; Li, Y. C.; Wang, H.; Kim, S. H.; Mallouk, T. E.; Wang, D., Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature Materials 2019, 18 (4), 384-389.
67. Lindgren, F.; Xu, C.; Niedzicki, L.; Marcinek, M.; Gustafsson, T.; Björefors, F.; Edström, K.; Younesi, R., SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (24), 15758-15766.
68. Zhu, Y.; Li, Y.; Bettge, M.; Abraham, D. P., Positive Electrode Passivation by LiDFOB Electrolyte Additive in High-Capacity Lithium-Ion Cells. Journal of The Electrochemical Society 2012, 159 (12), A2109-A2117.
69. Li, Y.; Wan, S.; Veith, G. M.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Sun, X.-G., A Novel Electrolyte Salt Additive for Lithium-Ion Batteries with Voltages Greater than 4.7 V. Advanced Energy Materials 2017, 7 (4), 1601397.
70. Jang, S. H.; Lee, K.-J.; Mun, J.; Han, Y.-K.; Yim, T., Chemically-induced cathode–electrolyte interphase created by lithium salt coating on Nickel-rich layered oxides cathode. Journal of Power Sources 2019, 410-411, 15-24.
71. von Aspern, N.; Röser, S.; Rezaei Rad, B.; Murmann, P.; Streipert, B.; Mönnighoff, X.; Tillmann, S. D.; Shevchuk, M.; Stubbmann-Kazakova, O.; Röschenthaler, G.-V.; Nowak, S.; Winter, M.; Cekic-Laskovic, I., Phosphorus additives for improving high voltage stability and safety of lithium ion batteries. Journal of Fluorine Chemistry 2017, 198, 24-33.
72. Zhao, W.; Zheng, G.; Lin, M.; Zhao, W.; Li, D.; Guan, X.; Ji, Y.; Ortiz, G. F.; Yang, Y., Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO2F2 salt-type additive and its working mechanism for LiNi0.5Mn0.25Co0.25O2 cathodes. Journal of Power Sources 2018, 380, 149-157.
73. Shangguan, X.; Xu, G.; Cui, Z.; Wang, Q.; Du, X.; Chen, K.; Huang, S.; Jia, G.; Li, F.; Wang, X.; Lu, D.; Dong, S.; Cui, G., Additive-Assisted Novel Dual-Salt Electrolyte Addresses Wide Temperature Operation of Lithium–Metal Batteries. Small 2019, 15 (16), 1900269.
74. Park, S.-J.; Hwang, J.-Y.; Sun, Y.-K., Trimethylsilyl azide (C3H9N3Si): a highly efficient additive for tailoring fluoroethylene carbonate (FEC) based electrolytes for Li-metal batteries. Journal of Materials Chemistry A 2019, 7 (22), 13441-13448.
75. Liu, H.; Naylor, A. J.; Menon, A. S.; Brant, W. R.; Edström, K.; Younesi, R., Understanding the Roles of Tris(trimethylsilyl) Phosphite (TMSPi) in LiNi0.8Mn0.1Co0.1O2 (NMC811)/Silicon–Graphite (Si–Gr) Lithium-Ion Batteries. 2020, 7 (15), 2000277.
76. Han, J.-G.; Hwang, E.; Kim, Y.; Park, S.; Kim, K.; Roh, D.-H.; Gu, M.; Lee, S.-H.; Kwon, T.-H.; Kim, Y.; Choi, N.-S.; Kim, B.-S., Dual-Functional Electrolyte Additives toward Long-Cycling Lithium-Ion Batteries: Ecofriendly Designed Carbonate Derivatives. ACS Applied Materials & Interfaces 2020, 12 (21), 24479-24487.
77. Yim, T.; Han, Y.-K., Tris(trimethylsilyl) Phosphite as an Efficient Electrolyte Additive To Improve the Surface Stability of Graphite Anodes. ACS Applied Materials \& Interfaces 2017, 9 (38), 32851-32858.
78. Park, S.-J.; Hwang, J.-Y.; Yoon, C. S.; Jung, H.-G.; Sun, Y.-K., Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces 2018, 10 (21), 17985-17993.
79. Hagos, T. T.; Su, W.-N.; Huang, C. J.; Thirumalraj, B.; Chiu, S.-F.; Abrha, L. H.; Hagos, T. M.; Bezabh, H. K.; Berhe, G. B.; Addis, T. W.; Cherng, J.-Y.; Yang, Y.-W.; Hwang, B. J., Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. Journal of Power Sources 2020, 461, 228053.
80. Hagos, T. M.; Hagos, T. T.; Bezabh, H. K.; Berhe, G. B.; Abrha, L. H.; Chiu, S.-F.; Huang, C.-J.; Su, W.-N.; Dai, H.; Hwang, B. J., Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS Applied Energy Materials 2020, 3 (11), 10722-10733.
81. Beyene, T. T. B., H. K.; Weret, M. A.; Hagos, T. M.; Huang, C.-J.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang. B.-J., Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. Journal of The Electrochemical Society, 2019, 166 (8), A1501-A1509.
82. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J.-G., Anode-Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials 2016, 26 (39), 7094-7102.
83. Kong, W.; Li, H.; Huang, X.; Chen, L., Gas evolution behaviors for several cathode materials in lithium-ion batteries. Journal of Power Sources 2005, 142 (1), 285-291.
84. Bernhard, R.; Metzger, M.; Gasteiger, H. A., Gas Evolution at Graphite Anodes Depending on Electrolyte Water Content and SEI Quality Studied by On-Line Electrochemical Mass Spectrometry. Journal of The Electrochemical Society 2015, 162 (10), A1984-A1989.
85. Metzger, M.; Strehle, B.; Solchenbach, S.; Gasteiger, H. A., Origin of H2Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation. Journal of The Electrochemical Society 2016, 163 (5), A798-A809.
86. Guéguen, A.; Streich, D.; He, M.; Mendez, M.; Chesneau, F. F.; Novák, P.; Berg, E. J., Decomposition of LiPF6in High Energy Lithium-Ion Batteries Studied with Online Electrochemical Mass Spectrometry. Journal of The Electrochemical Society 2016, 163 (6), A1095-A1100.
87. Schwenke, K. U.; Solchenbach, S.; Demeaux, J.; Lucht, B. L.; Gasteiger, H. A., The Impact of CO2 Evolved from VC and FEC during Formation of Graphite Anodes in Lithium-Ion Batteries. Journal of The Electrochemical Society 2019, 166 (10), A2035-A2047.
88. Freiberg, A. T. S.; Sicklinger, J.; Solchenbach, S.; Gasteiger, H. A., Li2CO3 decomposition in Li-ion batteries induced by the electrochemical oxidation of the electrolyte and of electrolyte impurities. Electrochimica Acta 2020, 346, 136271.
89. Yan, C.; Cheng, X.-B.; Tian, Y.; Chen, X.; Zhang, X.-Q.; Li, W.-J.; Huang, J.-Q.; Zhang, Q., Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition. 2018, 30 (25), 1707629.
90. Hagos, T. M.; Berhe, G. B.; Hagos, T. T.; Bezabh, H. K.; Abrha, L. H.; Beyene, T. T.; Huang, C.-J.; Yang, Y.-W.; Su, W.-N.; Dai, H.; Hwang, B.-J., Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochimica Acta 2019, 316, 52-59.
91. Hagos, T. T.; Thirumalraj, B.; Huang, C.-J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S.-F.; Su, W.-N.; Hwang, B.-J., Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces 2019, 11 (10), 9955-9963.
92. Genovese, M.; Louli, A. J.; Weber, R.; Martin, C.; Taskovic, T.; Dahn, J. R., Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries. Journal of The Electrochemical Society 2019, 166 (14), A3342-A3347.
93. Weber, R.; Genovese, M.; Louli, A. J.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J. R., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy 2019, 4 (8), 683-689.
94. Xue, W.; Shi, Z.; Huang, M.; Feng, S.; Wang, C.; Wang, F.; Lopez, J.; Qiao, B.; Xu, G.; Zhang, W.; Dong, Y.; Gao, R.; Shao-Horn, Y.; Johnson, J. A.; Li, J., FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Energy & Environmental Science 2020, 13 (1), 212-220.
95. Sahalie, N. A.; Assegie, A. A.; Su, W.-N.; Wondimkun, Z. T.; Jote, B. A.; Thirumalraj, B.; Huang, C.-J.; Yang, Y.-W.; Hwang, B.-J., Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. Journal of Power Sources 2019, 437, 226912.
96. Metzger, M.; Marino, C.; Sicklinger, J.; Haering, D.; Gasteiger, H. A., Anodic Oxidation of Conductive Carbon and Ethylene Carbonate in High-Voltage Li-Ion Batteries Quantified by On-Line Electrochemical Mass Spectrometry. J. Electrochem. Soc. 2015, 162 (7), A1123-A1134.
97. Galushkin, N. Е.; Yazvinskaya, N. N.; Galushkin, D. N., Mechanism of Gases Generation during Lithium-Ion Batteries Cycling. Journal of The Electrochemical Society 2019, 166 (6), A897-A908.
98. Strehle, B.; Solchenbach, S.; Metzger, M.; Schwenke, K. U.; Gasteiger, H. A., The Effect of CO2 on Alkyl Carbonate Trans-Esterification during Formation of Graphite Electrodes in Li-Ion Batteries. Journal of The Electrochemical Society 2017, 164 (12), A2513-A2526.
99. Ye, H.; Xin, S.; Yin, Y.-X.; Li, J.-Y.; Guo, Y.-G.; Wan, L.-J., Stable Li Plating/Stripping Electrochemistry Realized by a Hybrid Li Reservoir in Spherical Carbon Granules with 3D Conducting Skeletons. J. the Am. Chem. Soc. 2017, 139 (16), 5916-5922.
100. Yang, Y.; Davies, D. M.; Yin, Y.; Borodin, O.; Lee, J. Z.; Fang, C.; Olguin, M.; Zhang, Y.; Sablina, E. S.; Wang, X.; Rustomji, C. S.; Meng, Y. S., High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes. Joule 2019, 3 (8), 1986-2000.
101. Woo, J.-J.; Maroni, V. A.; Liu, G.; Vaughey, J. T.; Gosztola, D. J.; Amine, K.; Zhang, Z., Symmetrical Impedance Study on Inactivation Induced Degradation of Lithium Electrodes for Batteries Beyond Lithium-Ion. Journal of the American Chemical Society 2014, 161 (5), A827-A830.
102. Milien, M. S.; Beyer, H.; Beichel, W.; Klose, P.; Gasteiger, H. A.; Lucht, B. L.; Krossing, I., Lithium Bis(2,2,2-trifluoroethyl)phosphate Li[O2P(OCH2CF3)2]: A High Voltage Additive for LNMO/Graphite Cells. Journal of the American Chemical Society 2018, 165 (11), A2569-A2576.
103. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews 2017, 117 (15), 10403-10473.
104. Li, L.; Li, S.; Lu, Y., Suppression of dendritic lithium growth in lithium metal-based batteries. Chemical Communications 2018, 54 (50), 6648-6661.
105. Zheng, G.; Xiang, Y.; Chen, S.; Ganapathy, S.; Verhallen, T. W.; Liu, M.; Zhong, G.; Zhu, J.; Han, X.; Wang, W.; Zhao, W.; Wagemaker, M.; Yang, Y., Additives synergy for stable interface formation on rechargeable lithium metal anodes. Energy Storage Materials 2019.
106. Aiken, C. P.; Xia, J.; Wang, D. Y.; Stevens, D. A.; Trussler, S.; Dahn, J. R., An Apparatus for the Study of In Situ Gas Evolution in Li-Ion Pouch Cells. Journal of the Electrochemical Society 2014, 161 (10), A1548-A1554.
107. Self, J.; Aiken, C. P.; Petibon, R.; Dahn, J. R., Survey of Gas Expansion in Li-Ion NMC Pouch Cells. Journal of the Electrochemical Society 2015, 162 (6), A796-A802.
108. Jung, R.; Strobl, P.; Maglia, F.; Stinner, C.; Gasteiger, H. A., Temperature Dependence of Oxygen Release from LiNi0.6Mn0.2Co0.2O2 (NMC622) Cathode Materials for Li-Ion Batteries. Journalof the Electrochemical Society 2018, 165 (11), A2869-A2879.
109. Li, W.; Song, B.; Manthiram, A., High-voltage positive electrode materials for lithium-ion batteries. Chemical Society Reviews 2017, 46 (10), 3006-3059.
110. Guéguen, A.; Bolli, C.; Mendez, M. A.; Berg, E. J., Elucidating the Reactivity of TMSPi and TMSPa Additives in Carbonate Electrolytes - A Comparative OEMS Study. ACS Applied Energy Materials 2019.
111. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews 2004, 104 (10), 4303-4418.
112. Metzger, M.; Strehle, B.; Solchenbach, S.; Gasteiger, H. A., Origin of H2 Evolution in LIBs: H2O Reduction vs. Electrolyte Oxidation. Journal of The Electrochemical Society 2016, 163 (5), A798-A809.
113. Zhang, S. S., Insight into the Gassing Problem of Li-ion Battery. Frontiers in Energy Research 2014, 2 (59).
114. Kriston, A.; Adanouj, I.; Ruiz, V.; Pfrang, A., Quantification and simulation of thermal decomposition reactions of Li-ion battery materials by simultaneous thermal analysis coupled with gas analysis. Journal of Power Sources 2019, 435, 226774.
115. Li, Y.; Qi, Y., Energy landscape of the charge transfer reaction at the complex Li/SEI/electrolyte interface. Energy & Environmental Science 2019, 12 (4), 1286-1295.
116. Jin, Y.; Kneusels, N.-J. H.; Magusin, P. C. M. M.; Kim, G.; Castillo-Martínez, E.; Marbella, L. E.; Kerber, R. N.; Howe, D. J.; Paul, S.; Liu, T.; Grey, C. P., Identifying the Structural Basis for the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbonate. Journal of the American Chemical Society 2017, 139 (42), 14992-15004.
117. He, M.; Boulet-Roblin, L.; Borel, P.; Tessier, C.; Novák, P.; Villevieille, C.; Berg, E. J., Effects of Solvent, Lithium Salt, and Temperature on Stability of Carbonate-Based Electrolytes for 5.0 V LiNi0.5Mn1.5O4Electrodes. Journal of the Electrochemical Society 2015, 163 (2), A83-A89.
118. Bi, Y.; Wang, T.; Liu, M.; Du, R.; Yang, W.; Liu, Z.; Peng, Z.; Liu, Y.; Wang, D.; Sun, X., Stability of Li2CO3 in cathode of lithium ion battery and its influence on electrochemical performance. RSC Advances 2016, 6 (23), 19233-19237.
119. Seo, D. M.; Chalasani, D.; Parimalam, B. S.; Kadam, R.; Nie, M.; Lucht, B. L., Reduction Reactions of Carbonate Solvents for Lithium Ion Batteries. ECS Electrochemical Letters 2014, 3 (9), A91-A93.
120. Xu, S. D.; Zhuang, Q. C.; Wang, J.; Xu, Y. Q.; Zhu, Y. B., New Insight into Vinylethylene Carbonate as a Film Forming Additive to Ethylene Carbonate-Based Electrolytes for Lithium-Ion Batteries. International Journal of Electrochemical Science 2013, 8, 8058-8076.
121. Pritzl, D.; Solchenbach, S.; Wetjen, M.; Gasteiger, H. A., Analysis of Vinylene Carbonate (VC) as Additive in Graphite/LiNi0.5Mn1.5O4Cells. Journal of the Electrochemical Society 2017, 164 (12), A2625-A2635.
122. Hobold, G. M.; Khurram, A.; Gallant, B. M., Operando Gas Monitoring of Solid Electrolyte Interphase Reactions on Lithium. Chemistry of Materials 2020, 32 (6), 2341-2352.
123. Young, J.; Smeu, M., Ethylene Carbonate-Based Electrolyte Decomposition and Solid–Electrolyte Interphase Formation on Ca Metal Anodes. Journal of Physical Chemistry Letters 2018, 9 (12), 3295-3300.
124. Gachot, G.; Grugeon, S.; Armand, M.; Pilard, S.; Guenot, P.; Tarascon, J.-M.; Laruelle, S., Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. Journal of Power Sources 2008, 178 (1), 409-421.
125. Solchenbach, S.; Metzger, M.; Egawa, M.; Beyer, H.; Gasteiger, H. A., Quantification of PF5 and POF3 from Side Reactions of LiPF6 in Li-Ion Batteries. Joutnal of the Electrochemical Society 2018, 165 (13), A3022-A3028.
126. An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52-76.
127. Nakajima, T.; Hirobayashi, Y.; Takayanagi, Y.; Ohzawa, Y., Reactions of metallic Li or LiC6 with organic solvents for lithium ion battery. Journal of Power Sources 2013, 243, 581-584.
128. Li, T.; Yuan, X.-Z.; Zhang, L.; Song, D.; Shi, K.; Bock, C., Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries. Electrochemical Energy Reviews 2019.
129. Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G., Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes. Journal of the Americal Chemical Society 2011, 133 (20), 8040-8047.
130. Yabuuchi, N.; Yoshii, K.; Myung, S.-T.; Nakai, I.; Komaba, S., Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li2MnO3−LiCo1/3Ni1/3Mn1/3O2. Journal of the American Chemical Society 2011, 133 (12), 4404-4419.
131. Balaish, M.; Kraytsberg, A.; Ein-Eli, Y., A critical review on lithium–air battery electrolytes. Physical Chemistry Chemical Physics 2014, 16 (7), 2801-2822.
132. Lian, F.; Li, Y.; He, Y.; Guan, H.; Yan, K.; Qiu, W.; Chou, K.-C.; Axmann, P.; Wohlfahrt-Mehrens, M., Preparation of LiBOB via rheological phase method and its application to mitigate voltage fade of Li1.16[Mn0.75Ni0.25]0.84O2 cathode. RSC Advances 2015, 5 (105), 86763-86770.
133. Wandt, J.; Freiberg, A. T. S.; Ogrodnik, A.; Gasteiger, H. A., Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Materials Today 2018, 21 (8), 825-833.
134. Freiberg, A. T. S.; Roos, M. K.; Wandt, J.; de Vivie-Riedle, R.; Gasteiger, H. A., Singlet Oxygen Reactivity with Carbonate Solvents Used for Li-Ion Battery Electrolytes. Journal of Physical Chemistry A 2018, 122 (45), 8828-8839.
135. Xing, L.; Li, W.; Wang, C.; Gu, F.; Xu, M.; Tan, C.; Yi, J., Theoretical Investigations on Oxidative Stability of Solvents and Oxidative Decomposition Mechanism of Ethylene Carbonate for Lithium Ion Battery Use. Journal of Physical Chemistry B 2009, 113 (52), 16596-16602.
136. Wilken, S.; Treskow, M.; Scheers, J.; Johansson, P.; Jacobsson, P., Initial stages of thermal decomposition of LiPF6-based lithium ion battery electrolytes by detailed Raman and NMR spectroscopy. RSC Advances 2013, 3 (37), 16359-16364.
137. Schultz, C.; Vedder, S.; Streipert, B.; Winter, M.; Nowak, S., Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS. RSC Advances 2017, 7 (45), 27853-27862.
138. Lamb, J.; Orendorff, C. J.; Roth, E. P.; Langendorf, J., Studies on the Thermal Breakdown of Common Li-Ion Battery Electrolyte Components. Journal of The Electrochemical Society 2015, 162 (10), A2131-A2135.
139. Leung, K.; Soto, F.; Hankins, K.; Balbuena, P. B.; Harrison, K. L., Stability of Solid Electrolyte Interphase Components on Lithium Metal and Reactive Anode Material Surfaces. Journal of Physical Chememistry C 2016, 120 (12), 6302-6313.
140. Onuki, M.; Kinoshita, S.; Sakata, Y.; Yanagidate, M.; Otake, Y.; Ue, M.; Deguchi, M., Identification of the Source of Evolved Gas in Li-Ion Batteries Using #2#1 -labeled Solvents. The Journal of Electrochemical Society 2008, 155 (11), A794-A797.
141. Thirumalraj, B.; Hagos, T. T.; Huang, C.-J.; Teshager, M. A.; Cheng, J.-H.; Su, W.-N.; Hwang, B.-J., Nucleation and Growth Mechanism of Lithium Metal Electroplating. Joutnal of the Americaln Chemical Society 2019, 141 (46), 18612-18623.
142. Ramos-Sanchez, G.; Soto, F. A.; Martinez de la Hoz, J. M.; Liu, Z.; Mukherjee, P. P.; El-Mellouhi, F.; Seminario, J. M.; Balbuena, P. B., Computational Studies of Interfacial Reactions at Anode Materials: Initial Stages of the Solid-Electrolyte-Interphase Layer Formation. Journal of Electrochemical Energy Conversion and Storage 2016, 13 (3).
143. Spotnitz, R.; Franklin, J., Abuse behavior of high-power, lithium-ion cells. Journal of Power Sources 2003, 113 (1), 81-100.
144. Liu, T.; Lin, L.; Bi, X.; Tian, L.; Yang, K.; Liu, J.; Li, M.; Chen, Z.; Lu, J.; Amine, K.; Xu, K.; Pan, F., In situ quantification of interphasial chemistry in Li-ion battery. Nature Nanotechnology 2019, 14 (1), 50-56.
145. Henschel, J.; Peschel, C.; Klein, S.; Horsthemke, F.; Winter, M.; Nowak, S., Clarification of Decomposition Pathways in a State-of-the-Art Lithium Ion Battery Electrolyte through 13C-Labeling of Electrolyte Components. Angewandte Chemie International Edition 2020, 59 (15), 6128-6137.
146. Zhang, X.-Q.; Cheng, X.-B.; Chen, X.; Yan, C.; Zhang, Q., Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries. Advanced Functional Materials 2017, 27 (10), 1605989.
147. Liu, L.; Gu, S.; Wang, S.; Zhang, X.; Chen, S., A LiPO2F2/LiPF6 dual-salt electrolyte enabled stable cycling performance of nickel-rich lithium ion batteries. RSC Advances 2020, 10 (3), 1704-1710.
148. Hagos, T. T.; Thirumalraj, B.; Huang, C.-J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S.-F.; Su, W.-N.; Hwang, B.-J., Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Appl. Mater. & Interfaces 2019, 11 (10), 9955-9963.
149. Chen, R.; Li, Q.; Yu, X.; Chen, L.; Li, H., Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chemical Reviews 2020, 120 (14), 6820-6877.
150. Veith, G. M.; Doucet, M.; Baldwin, J. K.; Sacci, R. L.; Fears, T. M.; Wang, Y.; Browning, J. F., Direct Determination of Solid-Electrolyte Interphase Thickness and Composition as a Function of State of Charge on a Silicon Anode. The Journal of Physical Chemistry C 2015, 119 (35), 20339-20349.
151. Mandli, A. R.; Kaushik, A.; Patil, R. S.; Naha, A.; Hariharan, K. S.; Kolake, S. M.; Han, S.; Choi, W., Analysis of the effect of resistance increase on the capacity fade of lithium ion batteries. International Journal of Energy Research 2019, 43 (6), 2044-2056.
152. Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials 2018, 4, 15.
153. Hausbrand, R. J., W.,, Reaction Layer Formation and Charge Transfer at Li-Ion Cathode—Electrolyte Interfaces: Concepts and Results Obtained by a Surface Science Approach. Surface Science and Electrochemistry 2018, 232 - 245.
154. Soto, F. A.; Ma, Y.; Martinez de la Hoz, J. M.; Seminario, J. M.; Balbuena, P. B., Formation and Growth Mechanisms of Solid-Electrolyte Interphase Layers in Rechargeable Batteries. Chemistry of Materials 2015, 27 (23), 7990-8000.
155. Liu Y.; Xiong S.; Wang J.; Jiao X.; Li S.; Zhang C.; Song Z.; Song J., Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Materials 2019, 19, 24 - 30.
156. Zhang, R.; Chen, X.-R.; Chen, X.; Cheng, X.-B.; Zhang, X.-Q.; Yan, C.; Zhang, Q., Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. Angewandte Chemie International Edition 2017, 56 (27), 7764-7768.
157. Yan, K.; Wang, J.; Zhao, S.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G., Temperature-Dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes. Angewandte Chemie International Edition 2019, 58 (33), 11364-11368.
158. Yang, Y.; Davies, D. M.; Yin, Y.; Borodin, O.; Lee, J. Z.; Fang, C.; Olguin, M.; Zhang, Y.; Sablina, E. S.; Wang, X.; Rustomji, C. S.; Meng, Y. S., High-Efficiency Lithium-Metal Anode Enabled by Liquefied Gas Electrolytes. Joule 2019, 3 (8), 1986 - 2000.
159. Yang, Y.; Davies, D. M.; Yin, Y.; Borodin, O.; Lee, J. Z.; Fang, C.; Olguin, M.; Zhang, Y.; Sablina, E. S.; Wang, X.; Rustomji, C. S.; Meng, Y. S., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 2016, 105, 52 - 76.
160. Wondimkun, Z. T.; Tegegne, W. A.; Jiang, S.-K.; Huang, C.-J.; Sahalie, N. A.; Weret, M. A.; Hsua, J.-Y.; Hsieh, P.-L.; Huang, Y.-S.; Wu, S.-H.; Su, W.-N.; Hwang, B. J., Highly-lithiophilic Ag@PDA-GO film to Suppress Dendrite Formation on Cu Substrate in Anode-free Lithium Metal Batteries. Energy Storage Materials 2021, 35, 334 - 344.
161. Guo, W.; Meng, Y.; Hu, Y.; Wu, X.; Ju, Z.; Zhuang, Q., Surface and Interface Modification of Electrode Materials for Lithium-Ion Batteries With Organic Liquid Electrolyte. Frontiers in Energy Research 2020, 8 (170).
162. Kim H. R.; Choi W. M., Graphene modified copper current collector for enhanced electrochemical performance of Li-ion battery. Scripta Materialia 2018, 146, 100 - 104.
163. Cui, S.; Zhai, P.; Yang, W.; Wei, Y.; Xiao, J.; Deng, L.; Gong, Y., Large-Scale Modification of Commercial Copper Foil with Lithiophilic Metal Layer for Li Metal Battery. Advanced sceinece news 2020, 16 (5), 1905620.
164. Yang, J., Shkrob, I., Liu, K., Connell, J., Rago, N. L. D., Zhang, Z., Liao, C., 4-(Trimethylsilyl) Morpholine as a Multifunctional Electrolyte Additive in High Voltage Lithium Ion Batteries. Journal of the Electrochemical Society 2020, 167 070533.
165. Li, J.; Xing, L.; Zhang, R.; Chen, M.; Wang, Z.; Xu, M.; Li, W., Tris(trimethylsilyl)borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte. Journal of Power Sources 2015, 285, 360 - 366.
166. Guo, Y.; Li, D.; Xiong, R.; Li, H., Investigation of the temperature-dependent behaviours of Li metal anode. Chemical Communications 2019, 55 (66), 9773-9776.
167. Gong, C.; Pu, S. D.; Gao, X.; Yang, S.; Liu, J.; Ning, Z.; Rees, G. J.; Capone, I.; Pi, L.; Liu, B.; Hartley, G. O.; Fawdon, J.; Luo, J.; Pasta, M.; Grovenor, C. R. M.; Bruce, P. G.; Robertson, A. W., Revealing the Role of Fluoride-Rich Battery Electrode Interphases by Operando Transmission Electron Microscopy. Advanced Energy Materials 2021, 11 (10), 2003118.
168. Pang, Q.; Liang, X.; Kochetkov, I. R.; Hartmann, P.; Nazar, L. F., Stabilizing Lithium Plating by a Biphasic Surface Layer Formed In Situ. Angewandte Chemie International Edition 2018, 57 (31), 9795-9798.
169. Shi, Y.; Wan, J.; Liu, G.-X.; Zuo, T.-T.; Song, Y.-X.; Liu, B.; Guo, Y.-G.; Wen, R.; Wan, L.-J., Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi-Solid-State Lithium-Metal Batteries. Angewandte Chemie International Edition 2020, 59 (41), 18120-18125.
170. Umamaheswari. J., T. R. G., Mary E. F., , Review—Lithium Plating Detection Methods in Li-Ion Batteries. Journal of The Electrochemical Society 167, 160552.
171. Li, Q.; Jiao, S.; Luo, L.; Ding, M. S.; Zheng, J.; Cartmell, S. S.; Wang, C. M.; Xu, K.; Zhang, J. G.; Xu, W., Wide-Temperature Electrolytes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2017, 9 (22), 18826-18835.
172. Nanda, S.; Gupta, A.; Manthiram, A., Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries. 2021, 11 (2), 2000804.
173. Xu, C.; Lindgren, F.; Philippe, B.; Gorgoi, M.; Björefors, F.; Edström, K.; Gustafsson, T., Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive. Chemistry of Materials 2015, 27 (7), 2591-2599.
174. Schroder, K.; Alvarado, J.; Yersak, T. A.; Li, J.; Dudney, N.; Webb, L. J.; Meng, Y. S.; Stevenson, K. J., The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes. Chemistry of Materials 2015, 27 (16), 5531-5542.
175. Chen, L.; Wang, K.; Xie, X.; Xie, J., Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. Journal of Power Sources 2007, 174 (2), 538-543.
176. Peng, Z.; Cao, X.; Gao, P.; Jia, H.; Ren, X.; Roy, S.; Li, Z.; Zhu, Y.; Xie, W.; Liu, D.; Li, Q.; Wang, D.; Xu, W.; Zhang, J.-G., High-Power Lithium Metal Batteries Enabled by High-Concentration Acetonitrile-Based Electrolytes with Vinylene Carbonate Additive. Advanced Function Materials 2020, 30 (24), 2001285.
177. Dahee, J. H., L.; Taeyeong, H.; Seokwoo, K.; Myung-Hyun, R.; and YongMin, L.;, Effect of Lithium Nitrate (LiNO3) on Lithium Metal Secondary Batteries As a Lithium Metal Stabilizing Electrolyte Additive. The Electrochemical Society 2016, MA2016-02 594.
178. Piao, N.; Liu, S.; Zhang, B.; Ji, X.; Fan, X.; Wang, L.; Wang, P.-F.; Jin, T.; Liou, S.-C.; Yang, H.; Jiang, J.; Xu, K.; Schroeder, M. A.; He, X.; Wang, C., Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters 2021, 1839-1848.
179. Liu, J.; Song, X.; Zhou, L.; Wang, S.; Song, W.; Liu, W.; Long, H.; Zhou, L.; Wu, H.; Feng, C.; Guo, Z., Fluorinated phosphazene derivative – A promising electrolyte additive for high voltage lithium ion batteries: From electrochemical performance to corrosion mechanism. Nano Energy 2018, 46, 404-414.
180. Jurng, S.; Brown, Z. L.; Kim, J.; Lucht, B. L., Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy & Environmental Science 2018, 11 (9), 2600-2608.
181. Tamene Tadesse Beyene; Hailemariam Kassa Bezabh; Misganaw Adigo Weret; Teklay Mezgebe Hagos; Chen-Jui Huang; Chia-Hsin Wang; Wei-Nien Su; Hongjie Dai; Bing-Joe Hwang, Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. Journal of The Electrochemical Society 2019, 166 (8), A1501-A1509.
182. Nilsson, V.; Kotronia, A.; Lacey, M.; Edström, K.; Johansson, P., Highly Concentrated LiTFSI–EC Electrolytes for Lithium Metal Batteries. ACS Applied Energy Materials 2020, 3 (1), 200-207.
183. Arya, A.; Saykar, N. G.; Sharma, A. L., Impact of shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free-standing solid polymeric separator for energy storage/conversion devices. 2019, 136 (16), 47361.
184. Popovic, J.; Höfler, D.; Melchior, J. P.; Münchinger, A.; List, B.; Maier, J., High Lithium Transference Number Electrolytes Containing Tetratriflylpropene’s Lithium Salt. The Journal of Physical Chemistry Letters 2018, 9 (17), 5116-5120.
185. Huang, C.-J.; Thirumalraj, B.; Tao, H.-C.; Shitaw, K. N.; Sutiono, H.; Hagos, T. T.; Beyene, T. T.; Kuo, L.-M.; Wang, C.-C.; Wu, S.-H.; Su, W.-N.; Hwang, B. J., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nature Communications 2021, 12 (1), 1452.
186. Hu, M.; Wei, J.; Xing, L.; Zhou, Z., Effect of lithium difluoro(oxalate)borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries. Journal of Applied Electrochemistry 2012, 42 (5), 291-296.

無法下載圖示 全文公開日期 2028/08/11 (校內網路)
全文公開日期 2026/08/11 (校外網路)
全文公開日期 2026/08/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE