簡易檢索 / 詳目顯示

研究生: 魏謝宇
Hsieh-Yu Wei
論文名稱: 氧化石墨烯光觸媒應用在二氧化碳還原
Graphene oxide as photoctalyst for CO2 reduction
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 吳紀聖
Jeffrey Chi-Sheng Wu
林昇佃
Shawn D. Lin
陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 97
中文關鍵詞: 光觸媒二氧化碳還原氧化石墨烯光還原
外文關鍵詞: Photocatalyst, CO2 reduction, graphene oxide, photoreduction
相關次數: 點閱:325下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要探討不同的氧化石墨烯製程做為光觸媒的差異性,分別比較修改式Hummer’s氧化石墨烯(Hummer’s GO, H GO)以及改良式氧化石墨烯(Improved GO, I GO),根據在氧化過程中不同的操作參數對於二氧化碳光催化還原的影響。
在光催化之實驗中,主要利用批次光催化還原系統,以二氧化碳及水氣連續通入不鏽鋼之反應器中,利用300瓦之鹵素燈照射在氧化石墨烯光觸媒上,再經由自動注射系統注入氣相層析儀-火焰離子偵測器(Gas Chromatography/Flame Ionization Detector, GC/FID)測得產物,本實驗中測得之主要產物為甲醇。在實驗上的參數包括在H GO製程中加入的過錳酸鉀含量,以及在I GO製程中加入的磷酸含量。不同操作參數之結果顯示,在H GO製程中當過錳酸鉀量增加,能隙及氧化程度將增加,但光催化還原產率下降,而在I GO製程中隨著磷酸量增加,能隙及氧化程度也將增加,光催化還原產率也隨之增加,當氧化過程中加入過多磷酸反而降低能隙及氧化程度,產率也將下降。
根據XPS實驗結果與文獻比較,磷酸的添加可以避免氧化石墨烯基面形成C=O之缺陷,所以I GO製程相對於H GO製程可能有較少的缺陷形成在氧化石墨烯基面上,並在三倍磷酸的條件下(I-3P GO)將有最較少的缺陷及較大之氧化程度,對於光催化還原時親水性將有提升,進而幫助還原反應,其中甲醇產率最高將可達到0.124 μmol g-cat-1 hr-1,產率相對於商用二氧化鈦 (Degussa P25)有三倍以上的提升。


In this study, we investigate different oxidation processes of graphene oxide. The original process follows the modified Hummer’s method for the synthesis of graphene oxide (H GO). We also used another process that replaces NaNO3 during oxidation reaction with H3PO4 and called it improved graphene oxide (I GO). We studied the relation between the operating parameters in the oxidation process and methanol yield from the photocatalytic reduction of CO2.
In our experiment, CO2 and water vapor continuously flow into the stainless steel reactor. Then, a 300 W ELH lamp was used to irradiate the photocatalyst. The product was then analyzed using GC-FID. The main product of the experiment was found to be methanol.
In the synthesis of the photocatalyst, we tried to tune the parameters of H GO by changing the amount of KMnO4 during oxidation process. While the amount of KMnO4 increases, the band gap and oxidation level of the GO increases. However, the methanol yield decreases during the photocatalytic reduction reaction. We also tried to tune the parameters of I GO by changing the amount of H3PO4 during oxidation process. Similarly, the amount of H3PO4 increases, the band gap and oxidation level also increases. Importantly, the methanol yield would increase during the photocatalytic reduction reaction. However, excessive H3PO4 passivates the oxidation reaction thus decreasing methanol yield during photocatalytic reduction reaction.
We believe that in the I GO oxidation process, adding H3PO4 could avoid the formation of C=O defects on graphene oxide basal plane. Therefore, I GO process contains less defect formation on graphene oxide basal plane than H GO process. For the optimized conditions, triple H3PO4 treatment (I-3P GO) achieved larger oxidation level and less defect formation. It did not only enhance hydrophilic properties of the catalyst but also promote photocatalytic reduction reaction. In the photocatalytic reduction reaction, we determined that the methanol yield can achieve up to 0.124 μmol g-1 hr-1 using triple H3PO4 treatment (I-3P GO) catalyst. The methanol yield is three times that of TiO2, which is the conventional catalyst in CO2 photoreduction.

中文摘要 i Abstract iii 目錄 iv 圖目錄 viii 表目錄 xii 第一章 緒論 1 1-1前言 1 1-2研究動機 3 1-3研究目的 4 第二章 實驗原理與文獻探討 5 2-1光觸媒簡介 5 2-2光觸媒之發展及原理 5 2-3二氧化碳光還原 8 2-4影響光觸媒反應效率之因素 16 2-4-1 電荷捕捉效應 16 2-4-2能階位置 18 2-4-3 還原劑之影響 19 2-4-5 光強度之影響 20 2-4-6 光觸媒之量子效應 22 2-5光觸媒電化學分析與應用 24 2-5-1 光觸媒電化學能階分析 24 2-5-2 光觸媒電化學表面分析 25 2-6石墨烯及氧化石墨烯之發展 26 2-6-1石墨烯之發展 26 2-6-2氧化石墨烯之發展與應用 26 第三章 研究方法 31 3-1實驗材料及藥品 31 3-2實驗設備 32 3-3光觸媒製備 32 3-4實驗系統 35 3-5材料鑑定與分析 40 3-5-1 X光繞射分析儀 (X ray diffraction Spectrometer, XRD) 40 3-5-2 X光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 43 3-5-3穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 45 3-5-4紫外/可見光光譜分析儀(UV-vis Spectrometer) 46 3-5-5傅立葉紅外線光譜儀 (FTIR Spectrometer) 49 第四章 結果與討論 51 4-1光觸媒之鑑定與分析 51 4-1-1 X光繞射分析 51 4-1-2 UV-Vis吸收光譜分析 53 4-1-3 TEM分析 57 4-1-4 FTIR分析 58 4-1-5 XPS分析 60 4-1-6 能階位置分析 63 4-1-7 水接觸角分析 67 4-2 二氧化碳光催化還原反應 68 4-2-1 二氧化碳光催化還原產物分析 68 4-2-2 13C同位素對照實驗 71 第五章 結論 73 第六章 參考文獻 75  

[1] Kudo A. Photocatalyst Materials for Water Splitting. Catalysis Surveys from Asia. 2003;7(1):31-8.
[2] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972;238(5358):37-8.
[3] Yamashita H, Fujii Y, Ichihashi Y, Zhang SG, Ikeue K, Park DR, et al. Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catalysis Today. 1998;45(1–4):221-7.
[4] Tseng IH, Chang W-C, Wu JCS. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental. 2002;37:37-48.
[5] Ettedgui J, Diskin-Posner Y, Weiner L, Neumann R. Photoreduction of carbon dioxide to carbon monoxide with hydrogen catalyzed by a rhenium(I) phenanthroline-polyoxometalate hybrid complex. Journal of the American Chemical Society. 2011;133:188-90.
[6] Ahmed N, Shibata Y, Taniguchi T, Izumi Y. Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M(III) (M = aluminum, gallium) layered double hydroxides. Journal of Catalysis. 2011;279(1):123-35.
[7] Linsebigler AL, Lu G, Yates JT. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews. 1995;95(3):735-58.
[8] Roy SC, Varghese OK, Paulose M, Grimes CA. Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano. 2010;4(3):1259-78.
[9] Halmann M. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature. 1978;275(5676):115-6.
[10] Canfield D, Frese JKW. Reduction of Carbon Dioxide to Methanol on n- and p-GaAs and p-InP. Effect of Crystal Face, Electrolyte and Current Density. Journal of The Electrochemical Society. 1983;130(8):1772-3.
[11] Aurian-Blajeni B, Halmann M, Manassen J. Electrochemical measurement on the photoelectrochemical reduction of aqueous carbon dioxide on p-Gallium phosphide and p-Gallium arsenide semiconductor electrodes. Solar Energy Materials. 1983;8(4):425-40.
[12] Eggins BR, Irvine JTS, Murphy EP, Grimshaw J. Formation of two-carbon acids from carbon dioxide by photoreduction on cadmium sulphide. Journal of the Chemical Society, Chemical Communications. 1988(16):1123-4.
[13] Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S. Surface Characteristics of ZnS Nanocrystallites Relating to Their Photocatalysis for CO2 Reduction1. Langmuir. 1998;14(18):5154-9.
[14] Kuwabata S, Nishida K, Tsuda R, Inoue H, Yoneyama H. Photochemical reduction of carbon dioxide to methanol using ZnS microcrystallite as a photocatalyst in the presence of methanol dehydrogenase. Journal of the Electrochemical Society. 1994;141(6): 1498-503.
[15] Barton EE, Rampulla DM, Bocarsly AB. Selective Solar-Driven Reduction of CO2 to Methanol Using a Catalyzed p-GaP Based Photoelectrochemical Cell. Journal of the American Chemical Society. 2008;130(20):6342-4.
[16] Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature. 1979;277(5698):637-8.
[17] Halmann M, Ulman M, Aurian-Blajeni B. Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide. Solar Energy. 1983;31(4):429-31.
[18] Cook RL, MacDuff RC, Sammells AF. Photoelectrochemical carbon dioxide reduction to hydrocarbons at ambient temperature and pressure. J Electrochem Soc. 1988;135(12):3069-70.
[19] Adachi K, Ohta K, Mizuno T. Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Solar Energy. 1994;53(2):187-90.
[20] Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M. Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored within Micropores of Zeolites:  Effects of the Structure of the Active Sites and the Addition of Pt. The Journal of Physical Chemistry B. 1997;101(14):2632-6.
[21] Sayama K, Arakawa H. Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over zirconia catalyst. The Journal of Physical Chemistry. 1993;97(3):531-3.
[22] Ikeue K, Nozaki S, Ogawa M, Anpo M. Photocatalytic Reduction of CO2 with H2O on Ti-Containing Porous Silica Thin Film Photocatalysts. Catalysis Letters. 2002;80(3):111-4.
[23] Ulagappan N, Frei H. Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy. The Journal of Physical Chemistry A. 2000;104(33):7834-9.
[24] Sing Tan S, Zou L, Hu E. Photosynthesis of hydrogen and methane as key components for clean energy system. Science and Technology of Advanced Materials. 2007;8(1–2):89-92.
[25] Lo CC, Hung CH, Yuan CS, Wu JF. Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells. 2007;91(19):1765-74.
[26] Xia XH, Jia ZJ, Yu Y, Liang Y, Wang Z, Ma LL. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon. 2007;45(4):717-21.
[27] Wu J, Wu TH, Chu T, Huang H, Tsai D. Application of Optical-fiber Photoreactor for CO2; Photocatalytic Reduction. Topics in Catalysis. 2008;47(3):131-6.
[28] Thampi KR, Kiwi J, Gratzel M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature. 1987;327(6122):506-8.
[29] Takeda H, Koike K, Inoue H, Ishitani O. Development of an Efficient Photocatalytic System for CO2 Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies. Journal of the American Chemical Society. 2008;130(6):2023-31.
[30] Lehn JM, Ziessel R. Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. Proceedings of the National Academy of Sciences. 1982;79(2):701-4.
[31] Varghese OK, Paulose M, LaTempa TJ, Grimes CA. High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Letters. 2009;9(2):731-7.
[32] Wang C, Thompson RL, Baltrus J, Matranga C. Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts. The Journal of Physical Chemistry Letters. 2009;1(1):48-53.
[33] Nguyen T-V, Wu JCS. Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor. Solar Energy Materials and Solar Cells. 2008;92(8):864-72.
[34] Li Y, Wang WN, Zhan Z, Woo MH, Wu CY, Biswas P. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental. 2010;100(1-2):386-92.
[35] Nazimek D, Czech B. Artificial photosynthesis - CO2 towards methanol. IOP Conference Series: Materials Science and Engineering. 2011;19(1):012010.
[36] Grodkowski J, Dhanasekaran T, Neta P, Hambright P, Brunschwig BS, Shinozaki K, Fujita E. Reduction of Cobalt and Iron Phthalocyanines and the Role of the Reduced Species in Catalyzed Photoreduction of CO2. The Journal of Physical Chemistry A. 2000;104(48):11332-9.
[37] Melsheimer J, Guo W, Ziegler D, Wesemann M, Schlogl R. Methanation of carbon dioxide over Ru/Titania at room temperature: explorations for a photoassisted catalytic reaction. Catalysis Letters. 1991;11(2):157-68.
[38] Yahaya AH, Gondal MA, Hameed A. Selective laser enhanced photocatalytic conversion of CO2 into methanol. Chemical Physics Letters. 2004;400(1–3):206-12.
[39] Spanhel L, Haase M, Weller H, Henglein A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. Journal of the American Chemical Society. 1987;109(19):5649-55.
[40] Anpo M, Yamashita H, Ichihashi Y, Ehara S. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts. Journal of Electroanalytical Chemistry. 1995;396(1–2):21-6.
[41] Teramura K, Tanaka T, Ishikawa H, Kohno Y, Funabiki T. Photocatalytic Reduction of CO2 to CO in the Presence of H2 or CH4 as a Reductant over MgO. The Journal of Physical Chemistry B. 2003;108(1):346-54.
[42] Kohno Y, Ishikawa H, Tanaka T, Funabiki T, Yoshida S. Photoreduction of carbon dioxide by hydrogen over magnesium oxide. Physical Chemistry Chemical Physics. 2001;3(6):1108-13.
[43] Aurian-Blajeni B, Halmann M, Manassen J. Photoreduction of carbon dioxide and water into formaldehyde and methanol on semiconductor materials. Solar Energy. 1980;25(2):165-70.
[44] Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang SG, Ichihashi Y, et al. Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catalysis Today. 1998;44(1):327-32.
[45] Zhang Z, Wang CC, Zakaria R, Ying JY. Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts. The Journal of Physical Chemistry B. 1998;102(52):10871-8.
[46] Dodd A, McKinley A, Saunders M, Tsuzuki T. Effect of Particle Size on the Photocatalytic Activity of Nanoparticulate Zinc Oxide. Journal of Nanoparticle Research. 2006;8(1):43-51.
[47] Helbig M, Horhold HH. Investigation of poly(arylenevinylene)s, 40. Electrochemical studies on poly(p-phenylenevinylene)s. Die Makromolekulare Chemie. 1993;194(6):1607-18.
[48] Alhalasah W, Holze R. Electrochemical bandgaps of a series of poly-3-p-phenylthiophenes. Journal of Solid State Electrochemistry. 2007;11(Compendex):1605-12.
[49] Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183-91.
[50] Lee C, Wei X, Kysar JW, Hone J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008;321(5887):385-8.
[51] Lerf A, He H, Riedl T, Forster M, Klinowski J. 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives. Solid State Ionics. 1997;101–103, Part 2(0):857-62.
[52] He H, Klinowski J, Forster M, Lerf A. A new structural model for graphite oxide. Chemical Physics Letters. 1998;287(1-2):53-6.
[53] Hummers WS, Offeman RE. Preparation of Graphitic Oxide. Journal of the American Chemical Society. 1958;80(6):1339-.
[54] Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature. 2006;442(7100):282-6.
[55] Li D, Muller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nano. 2008;3(2):101-5.
[56] Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved Synthesis of Graphene Oxide. ACS Nano. 2010;4(8):4806-14.
[57] Higginbotham AL, Kosynkin DV, Sinitskii A, Sun Z, Tour JM. Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano. 2010;4(4):2059-69.
[58] Krishnamoorthy K, Mohan R, Kim SJ. Graphene oxide as a photocatalytic material. Applied Physics Letters. 2011;98(24):244101-3.
[59] Yeh TF, Syu JM, Cheng C, Chang TH, Teng H. Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Advanced Functional Materials. 2010;20(14):2255-62.
[60] Zhang H, Lv X, Li Y, Wang Y, Li J. P25-Graphene Composite as a High Performance Photocatalyst. ACS Nano. 2009;4(1):380-6.
[61] Lerf A, He H, Forster M, Klinowski J. Structure of Graphite Oxide Revisited. The Journal of Physical Chemistry B. 1998;102(23):4477-82.
[62] Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, et al. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chemistry of Materials. 2006;18(11):2740-9.
[63] Kiebach R, Luna-Lopez JA, Dias GO, Aceves-Mijares M, Swart JW. Characterization of silicon rich oxides with tunable optical band gap on sapphire substrates by photoluminescence, UV/Vis and raman spectroscopy. Journal of the Mexican Chemical Society. 2008;52(3):212-8.
[64] Ikeue K, Yamashita H, Anpo M, Takewaki T. Photocatalytic Reduction of CO2 with H2O on Ti−β Zeolite Photocatalysts:  Effect of the Hydrophobic and Hydrophilic Properties. The Journal of Physical Chemistry B. 2001;105(35):8350-5.
[65] Szabo T, Berkesi O, Dekany I. DRIFT study of deuterium-exchanged graphite oxide. Carbon. 2005;43(15):3186-9.
[66] Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene Oxide Dispersions in Organic Solvents. Langmuir. 2008;24(19):10560-4.

無法下載圖示 全文公開日期 2017/07/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE