簡易檢索 / 詳目顯示

研究生: 張仲傑
Zhong-Jie Zhang
論文名稱: 以光濾波器實現光學等化改善高速光傳輸系統
Using optical filter based optical equalization to improve high speed optical transmission system
指導教授: 李三良
San-Liang Lee 
口試委員: 李三良
San-Liang Lee
吳靜雄
Jing-Shown Wu
曹恆偉
Hen-Wai Tsao
廖顯奎
Shien-Kuei Liaw
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 89
中文關鍵詞: 光學等化直調雷射雷射啁啾四階震幅調變訊號啁啾管理
外文關鍵詞: Optical equalization, Directly-modulated laser, Laser chirp, Four level pulse amplitude modulation, chirp management
相關次數: 點閱:175下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出使用直調雷射以及繞射光柵濾波器之特性,來改善頻率響應不足之光纖傳輸系統,利用直調雷射所產生的頻率調變,在經過濾波器後轉變為振幅調變,藉此可達到提升明滅比並改善頻率響應。也可藉由頻譜響應的相位變化與光纖色散交互作用,來提升光纖傳輸距離。
本論文探討使用頻寬不足的直調雷射結合光濾波器來超頻傳輸高速訊號之可行性,使用波長分別為1.3及1.5微米且原為傳輸10 Gb/s 訊號的雷射,希望能達到傳輸25 Gb/s 以上訊號速率的功效,並討論使用不同調變方式的改善效果。首先藉由光學模擬軟體來模擬一高速光纖傳輸系統,再藉由加上光濾波器作為等化器來觀察此系統的效能變化,再以實驗來驗證。最後再討論將濾波器放於傳送端或接收端分別作類似於傳送端等化或接收端等化之可行性。
我們實現使用頻寬為14GHz之直調雷射搭配頻譜整形濾波器傳輸32 Gb/s的非歸零碼訊號及28 Gbaud/s的四階振幅調變訊號,明顯改善眼圖及誤碼率,並提高頻率響應約3 GHz,同時驗證了傳送端或接收端的等化皆為可行的。


We proposed a scheme to improve the transmission performance by using a diffraction grating filter for an optical transmission system with directly modulated lasers (DML) of insufficient bandwidth. The diffraction grating filter is used as a reshaping filter to convert the inherently frequency modulation (FM) associated with the amplitude modulation (AM) signals and then increase the high-frequency responses. The use of optical reshaping filter can provide three merits: extinction ratio (ER) improvement, extension of transmission distance of DML, and improvement of the frequency response of transmission system.
This work investigates the feasibility of combining a directly modulated laser of insufficient frequency response with optical reshaping filter to transmit high-speed signals. The investigation is conducted for the wavelength of 1.3 μm and 1.5 μm. An commercial software is used to simulate the DML-based high-speed optical transmission system, and then observe the performance enhancement after adding an optical filter, which acts as an optical equalizer from the FM-to-AM conversion. The performance enhancement is also verified by experimental measurements. We verify that the effect of placing the optical filter at the transmit end or the receive end leads to the same performance enhancement.
We realized the use of a directly modulated laser with 14-GHz bandwidth and a diffraction grating optical equalization filter to transmit 32 Gb/s NRZ and 28 Gbaud/s PAM-4 signals. The eye diagram and bit error rate are improved by using the optical equalizer. The increase in 3dB bandwidth by about 3GHz is demonstrated.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 1第一章 導論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻探討 3 1.4 論文架構 9 2第二章 系統調變方法及元件介紹 10 2.1 前言 10 2.2 四階脈衝振幅調變(PAM-4)系統 10 2.2.1 四階脈衝振幅調變訊號介紹 10 2.2.2 OOK訊號與四階脈衝振幅調變訊號之比較 11 2.3 雷射特性介紹 12 2.3.1 直調雷射與外調雷射比較 12 2.3.2 啁啾效應的產生及特性 13 2.3.3 啁啾效應對光訊號脈波的影響 16 2.4 直調雷射之頻譜整形 18 2.5 頻譜整形元件-繞射光柵濾波器的介紹 20 2.6 前向錯誤更正碼(FEC)介紹 21 3第三章 VPI傳輸系統模擬 23 3.1 前言 23 3.2 系統參數設定 23 3.2.1 雷射參數設定 23 3.2.2 濾波器之設定 25 3.3 濾波器頻譜整形之設定及模擬結果 27 3.3.1 頻譜整形效果 28 3.4 頻率響應比較 43 3.5 傳輸距離改善 44 3.6 本章小結 47 4第四章 系統量測結果與分析 48 4.1 前言 48 4.2 系統量測元件 48 4.2.1 直調雷射之特性量測 48 4.2.2 頻譜整形濾波器特性 49 4.3 系統架構及量測 50 4.3.1 量測架構 50 4.3.2 NRZ量測結果 52 4.3.3 PAM-4量測結果 54 4.3.4 發射端與接收端改善結果 58 4.4 頻率響應改善 60 5第五章 結論 65 5.1 成果 65 5.2 未來研究方向 66

[1] http://www.ieee802.org/3/
[2] D. P. Shea and J. E. Mitchell, “A 10-Gb/s 1024-Way-Spilt 100-km Long-Reach Optical-Access Network,” IEEE Journal of Lightwave Technology ,Vol. 25, no. 3, pp. 685-693, 2007.
[3] E. F. Eslam, Student Member, IEEE, M. Chagnon, M. Sowailem, A. Samani, M. M. Osman, and D. V. Plant, “168-Gb/s Single Carrier PAM4 Transmission for Intra-Data Center Optical Interconnects,” IEEE Photonics Technology Letters Vol. 29, Issue. 3, Feb.1, 1 2017.
[4] U. Troppenz, M. Narodovitch, C. Kottke, G. Przyrembel, W.D. Molzow, A. Sigmund, H.G. Bach and M. Moehrle, “1.3 μm Electroabsorption Modulated Lasers for PAM4/PAM8 single channel 100 Gb/s, ” paper Th-B2-5 - 26th Int. Conf. on IPRM.
[5] 宋媛媛,“利用頻譜整形之特性完成高速25-Gbit/s*4分時分波多工被動光網路系統,”國立台灣科技大學碩士論文, 2015.
[6] J. Wei, Q. Cheng, R. V. Penty, I. H. White, D. G. Cunningham, “400 Gigabit Ethernet Using Advanced Modulation Formats: Performance, Complexity, and Power Dissipation,” IEEE Communications Magazine, pp. 182-189, 2015.
[7] M. C. Cheng, C. T. Tsai, Y. C. Chi, and G. R. Lin, “Direct QAM-OFDM Encoding of an L-band Master –to-Slave Injection-Locked WRC-FPLD Pair for 2820Gb/s DWDM-PON Transmission,” Journal of Lightwave Technology, Vol. 32, no. 17, pp. 2981-2988, 2014.
[8] J. Man, W. Chen, X. Song, and Li Zeng, “A Low-Cost 100GE Optical transceiver Module for 2km SMF Interconnect with PAM4 Modulation,” Optical Fiber Communications Conference and Exhibition (OFC), pp. 1-3, 2014.
[9] 許政賢, “Optical Equalization by Optical Filtering to Improve High-Data-Rate PAM-4 Transmission” 國立台灣科技大學碩士論文, 2016.
[10] Z. F. Fan and D. Mahgerefteh, “Chirp Managed Lasers A New Technology for 10Gbps Optical Transmitters,” Optik & Photonik, Vol. 2, no. 4, pp. 39-41, 2007.
[11] D. Mahgerefteh, Y. Matsui, C. Liao, B. Johnson, D. Walker, X. Zheng, Z. F. Fan, K. McCallion and P. Tayebati, “Error-free 250km transmission in standard fiber using compact 10 Gbit/s chirp-managed directly modulated lasers(CML) at 1550nm,” Electronics Letters, Vol. 41, no. 9, pp. 543-544, 2005.
[12] Y. Yokoyama, T. Hatanaka, N. Oku, H. Tanaka, I. Kobayashi, H. Yamazaki and A. Suzuki, “10.709-Gb/s-300-km Transmission of PLC-based Chirp-Managed Laser Packaged in Pluggable Transceiver Without Any Optical or Electrical Dispersion Compensation,” 34th European Conference and Exhibition on Optical Communications, ECOC, Brussels, Belgium, pp. 1-2, 2008.
[13] V. Cristofori, F. D. Ros, O. Ozolins, M. E. Chaibi, L. Bramerie, Y. Ding, X. Pang, A. Shen, A. Gallet, G. H. Duan, K. Hassan, S. Olivier, S. Popov, G. Jacobsen, L. K. Oxenl⊘we and C. Peucheret, “25-Gb/s Transmission Over 2.5-km SSMF by Silicon MRR Enhanced 1.55-μm III-V/SOI DML,” Photonics Conference (IPC) 2017 IEEE.
[14] O. Ozolins, F. D. Ros, V. Cristofori, X. Pang, L. K. Oxenl⊘we, R. Schatz, M. E. Chaibi, L. Bramerie, S. Popov, M. Galili, G. Jacobsen and C. Peucheret, “Optical Spectral Reshaping for Directly Modulated 4-Pulse Amplitude Modulation Signals,” 2017 19th International Conference on Transparent Optical Networks.
[15] C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 Transmission Using 18-Gbps DML,” IEEE Photonics Journal Vol. 8, Issue. 3 June 2016.
[16] L. Yi, Z. Li, M. Bi, W. Wei and W. Hu, “Symmetric 40-Gb/s TWDM-PON With 39-dB Power Budget,” IEEE Photonics Technology Letters, Vol. 25, no. 7, pp. 644-647, 2013.
[17] M. Bi, S. Xiao, L. Yi, H. He, J. Li, X. Yang and W. Hu, “Power budget improvement of symmetric 40-Gb/s DML-based TWDM-PON system,” Optics Express, Vol. 22, no. 6, pp. 6925-6933, 2014.
[18] Pittsburgh, PA, C. Cole, Finisar, J. J. Maki, J. Networks, A. Srivastava, NTT Electronics, P. Stassar and Huawei, ”400Gb/s 2km & 10km duplex SMF PAM-4 PMD Baseline Specifications” 400 Gb/s Ethernet Task Force IEEE 802.3 Interim Meeting 18 – 20 May 2015
[19] A. Healey, Ch. Morgan and M. Shanbhag, “Beyond 25 Gbps: A Study of NRZ & Multi-Level Modulation in Alternative Backplane Architectures,” DesignCon, 2013.
[20] K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, Å. Haglund, M. Karlsson, P. A. Andrekson, E. Agrell and A. Larsson, “4-PAM for High-Speed Short-Range Optical Communications,” IEEE/OSA Journal of Optical Communications and Networking, Vol. 4, no. 11, pp. 885-894, 2012.
[21] J. C. Cartledge and G. S. Burley, “The effect of laser chirping on lightwave system performance,” IEEE Journal of Lightwave Technology, Vol. 7, no. 3, pp. 568-573, 1989.
[22] F. Koyama and K. Iga, “Frequency chirping in external modulators,” IEEE Journal of Lightwave Technology, Vol. 6, no. 1, pp. 87-93, 1988.
[23] R. A. Linke, “Modulation induced transient chirping in single frequency lasers,” Journal of Quantum Electronics, Vol. 21, no. 6, pp. 593-597, 1985.
[24] B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” IEEE Journal of Lightwave Technology, Vol. 10, no. 7, pp. 964-970, 1992.
[25] S. Yamamoto, M. Kuwazuru, H. Wakabayashi and Y. Iwamoto, “Analysis of chirp power penalty in 1.55-μm DFB-LD high-speed optical fiber transmission systems,” IEEE Journal of Lightwave Technology, Vol. 5, no. 10, pp. 1518-1524, 1987.
[26] R. S. Tucker, “High-speed modulation of semiconductor laser,” IEEE Journal of Lightwave Technology, Vol. 3, no. 6, pp. 2572-2584, 1985.
[27] Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion and P. Tayebati, “Chirp-Managed Directly Modulated Laser (CML),” IEEE Photonics Technology Letters, Vol. 18, no. 2, pp. 385-387, 2006.
[28] B. E. A. Saleh and M. C. Teich, “Fundamentals of photonics,” Willey, 1991.
[29] P. Krehlik, “Characterization of semiconductor laser frequency chirp based on signal distortion in dispersive optical fiber,” Opto-electronics review, Vol. 14, no. 2, pp. 123-128, 2006.
[30] 許俸鳴,“基於直調雷射分時分波多工被動光網路系統的啁啾效應控制技術,”國立台灣科技大學碩士論文, 2014
[31] Agilent Technologies, “Optical Spectrum Analysis Application Note”
[32] A. Tychopoulos, O. Koufopavlou, and I. Tomkos, “FEC in optical communications,” IEEE Circuits Dev. Mag., Vol. 22, No. 6, pp. 79–86, Nov./Dec. 2006.
[33] K. Seki, K. Mikami, A. Katayama, S. Suzuki, N. Shinohara, and M. Nakabayashi, “Single-chip FEC codec using a concatenated BCH code for 10Gbps LH optical transmission systems,” in Proc. IEEE Custom Integr. Circuits Conf. pp. 279–282, 2003.
[34] D. A. Morero, “Forward error correction for next-generation high-speed optical networks,” ClariPhy Argentina S.A.
[35] S. Y. Lin, H. W. Tsao, S. L. Lee, “A Novel Method for PAM-4 Signal Quality Estimation Using Asynchronous Eye Diagram Reconstruction,” Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), 2017
[36] http://www.rfwireless-world.com/Terminology/Direct-modulation-vs-External-modulation.html
[37] F. Devaux, Y. Sorel, J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” Journal of Lightwave Technology, Vol. 11, Issue 12, 1993
[38] S. Grillanda, R. Ji, F. Morichetti, et al., “Wavelength Locking of Silicon Photonics Multiplexer for DML-Based WDM Transmitter,” Journal of Lightwave Technology Vol. 35, Issue 4, Feb.15, 2017

QR CODE