簡易檢索 / 詳目顯示

研究生: 蕭敬峰
Jing-Fong Hsiao
論文名稱: 以音訊評估高壓噴射灌漿在土壤中切削能量衰減狀況
Using Acoustic Monitoring Method to Evaluate Grout Jet Cutting Energy Attenuation in Soils
指導教授: 廖洪鈞
Hung-Jiun Liao
口試委員: 鄭世豪
Shih-Hao Cheng
林益正
YI-JHENG Lin
廖洪鈞
Hung-Jiun Liao
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 196
中文關鍵詞: 高壓噴射灌漿音訊監測法灌漿切削能量衰減情況地盤改良
外文關鍵詞: jet grouting, acoustic monitoring method, jet cutting energy attenuation, ground improvement
相關次數: 點閱:193下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以音訊監測儀器系統,監聽高壓噴射灌漿工法之水泥漿切削土壤時所產生之音訊,來間接地評估高壓噴射灌漿噴射流在土壤中之能量衰減情況。並分別於日本、東南亞、台灣、香港等地,進行現地足尺寸試驗,蒐集在不同地質和施工參數條件下,高壓噴射灌漿之切削音訊值,作為成型樁品質量化指標之依據。由於在定點處,測音管所收集到之高壓噴射灌漿切削波峰值,有呈現常態分佈曲線的現象。因此本研究以噴射流波峰之平均值和標準差作為指標,再藉由此兩參數隨距離增加之變化情況,分別使用噴射流聲訊波峰之平均值衰減速率和標準差斜率,判斷高壓灌漿之噴射流能量,隨距離的增加而衰減及擴散程度。此外,本研究再從施工參數(灌漿流量、鑽桿旋轉速度、及鑽桿提升速度)、土壤性質(黏土、粉土質砂、砂土)、排泥措施、和噴射材料等因子,判斷各因子對切削能量衰減之影響,並找出敏感度較大的因子。其中,在有效樁徑之內、外,噴射流音訊在黏土層之波峰平均值衰減速率有很大差異。因此可由波峰平均值隨距離衰減速率所回歸出之曲線,推估出有效樁徑,作為評估黏土層高壓灌漿樁有效樁徑的參考。


    An acoustic monitoring instrument system was used in this study to monitor the sound generated during high-pressure grouting work, where the cement jet cut through the slurry and soil. On-site acoustic monitoring tests were carried out in Japan, Southeast Asia, Taiwan, and Hong Kong at various ground conditions. The monitor pipes installed at different distances around the jet nozzle collected the sound prints. It was found that the peaks of the sound prints produced by the grouting jet at a certain distance showed a normal distribution curve pattern. Therefore, the average values and standard deviation of the jet sound prints are used as indicators. The change of these two indicators with distance is used to judge the effectiveness of jet cutting through the average attenuation rate and the standard deviation slope of the acoustic peak generated by the grouting jet flow.
    In this study, the construction parameters (e.g., grout flow rate, drill pipe rotation speed, and drill pipe lift-up rate), soil properties (clay, silty sand, sandy soil, etc.), mud drainage measures, and grout jet materials are used as the influencing factors of the attenuation of jet grouting energy. Their influences on the pattern of jet grouting energy attenuation were studied and the more sensitive factors were identified. Since the average attenuation rate of the acoustic peaks inside and outside the effective cutting limit is different in clayey soil, the regression curve can be used to estimate the effective pile diameter produced by jet grouting work.

    論文摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 XI 表目錄 XVII 第一章緒論 1 1.1研究背景 1 1.2研究動機與目的 2 1.3研究方法以及內容 2 1.4研究架構 3 第二章文獻回顧 5 2.1高壓噴射灌漿原理 5 2.1.1 噴射流與土壤接觸機制 5 2.1.2高壓噴灌漿切削能量衰減的情況 6 2.2高壓噴射灌漿工法應用現況 7 2.3 V-JET工法 9 2.3.1 V-JET工法概要 9 2.3.2 V-JET施工步驟 11 2.4高壓噴射灌漿成效檢驗 12 2.4.1樁體強度 13 2.4.2滲透性 13 2.4.3改良樁徑量測方式 16 第三章 現地試驗儀器設備與試驗規劃 21 3.1監測系統開發目的 21 3.2高壓噴射灌漿之音訊監測系統 22 3.3大口徑超高壓噴射灌漿工法 25 3.3.1大口徑超高壓噴射灌漿工法概要 25 3.3.2大口徑超高壓噴射灌漿工法施工參數及施工程序 27 3.3.3大口徑高壓噴射灌漿主要特色 28 3.3.4排泥控制輔助措施 29 第四章試驗成果 31 4.1日本千葉縣試驗 31 4.1.1日本千葉縣試驗配置 31 4.1.2日本千葉縣現場地質情況 32 4.1.3日本千葉縣試驗施工參數 34 4.1.4日本千葉縣No.3試驗樁結果 35 4.1.5日本千葉縣No.4試驗樁結果 37 4.1.6日本千葉縣No.5試驗樁結果 39 4.1.7日本千葉縣No.6試驗樁結果 41 4.1.8日本千葉縣No.7試驗樁結果 43 4.1.9日本千葉縣試驗No.8試驗結果 45 4.1.10日本千葉縣No.13試驗樁結果 47 4.2日本茨城縣試驗 48 4.2.1日本茨城縣試驗配置 48 4.2.2日本茨城縣試驗地質情況 49 4.2.3日本茨城縣試驗施工參數 50 4.2.4日本茨城縣試驗結果 50 4.3台北試驗結果 53 4.3.1台北試驗配置 53 4.3.2台北試驗地質情況 54 4.3.3台北試驗施工參數 55 4.3.4台北試驗結果 56 4.4香港試驗結果 57 4.4.1香港試驗配置 57 4.4.2香港試驗地質情況 58 4.4.3香港試驗施工參數 59 4.4.4香港試驗結果 60 4.5馬來西亞試驗結果 61 4.5.1馬來西亞試驗配置 61 4.5.2馬來西亞試驗地質情況 62 4.5.3馬來西亞試驗施工參數 63 4.5.4馬來西亞試驗試驗結果 64 4.6汐止試驗結果 65 4.6.1汐止試驗配置 65 4.6.2汐止試驗地質情況 65 4.6.3汐止試驗施工參數 67 4.6.4灌漿後改良體品質檢核 70 4.6.5改良樁之有效樁徑判斷 71 4.6.6排泥輔助措施的有效性比較 74 4.6.7汐止試驗成果 76 第五章 音訊分析及結果 80 5.1音訊值的組成 80 5.2現地試驗切削音訊分析 82 5.2.1音訊值之內涵 82 5.2.2影響噴射流之波峰之因素 83 5.3音訊處理 84 5.3.1原始音訊 84 5.3.2擷取有效之音訊 85 5.3.3剔除噴射流有效音訊之雜訊-同步時域移動平均法 86 5.3.4噴射流波峰及波谷提取法 86 5.3.5利用常態分佈曲線提取波峰之特徵 87 5.3.6噴射流音訊波峰之平均值衰減速率及標準差斜率 88 5.4不同施工參數對於噴射流音訊結果的影響 90 5.4.1灌漿流量的變化對噴射流音訊的影響 90 5.4.2鑽桿旋轉速度的變化對噴射流音訊的影響 107 5.4.3鑽桿提昇速度的變化對噴射流音訊的影響 121 5.4.4小結 124 5.5土壤性質差異對噴射流音訊結果的影響 126 5.5.1馬來西亞案例-砂土層(SPT-N值=25) 126 5.5.2日本茨城縣-砂土層(SPT值=20) 131 5.5.3香港案例-粉土質砂(SPT-N值=19) 136 5.5.4汐止案例-低塑性黏土層(SPT-N值介於3~5) 140 5.5.5小結 144 5.6不同排泥輔助措施對噴射流音訊的影響 146 5.6.1汐止試驗 No.2-1排泥措施-加大排泥導管 146 5.6.2 汐止案例No.2-3 排泥措施-加大排泥導管、水刀切削、排泥導引孔設置 151 5.6.3小結 154 5.7 不同噴射材料對噴射流音訊結果的影響 156 5.7.1 No.2-1(Type C)噴射材料-高壓水 156 5.7.2 No.2-3(Type C)噴射材料-水泥漿 160 5.7.3小結 160 5.8噴射流切削能力在有效樁徑內以及外對於噴射流音訊結果的影響 162 5.8.1汐止案例No.2-1試驗樁 162 5.8.1汐止案例No.2-3試驗樁 165 5.8.3小結 168 第六章結論與建議 169 6.1結論 169 6.2建議 170 參考文獻 172

    1. JJGA日本高壓噴射灌漿協會(2011),”JET GROUT 高壓噴射灌漿工法技術資料”,JJGA日本高壓噴射灌漿協會。
    2. 新北市政府新建工程處(2021),” 汐止區新社后橋園道段道路北延穿越高速公路至明峰路段新道路工程(第一階段),大口徑超高壓噴射灌漿地盤處理工程-試驗工程,試驗報告書”。
    3. Superjet研究會(2022),”Superjet-Midi Super jet 技術資料”Superjet研究會
    4. 鄭世豪、廖洪鈞、王錦伍、李旻儒、陳世杰、游礎安(2022)” 黏土中提昇高壓噴射灌漿有效性之相關措施”,大地技師,第24期。
    5. 廖洪鈞、陳福勝、何泰源(2008)”台灣地區地盤改良技術之發展”,中華技術,第77期。
    6. 李慶龍(1997)” 高壓噴射灌漿之施工技術及應用”,中興工程,第55期,pp.53~74。
    7. 鄭世豪、廖洪鈞、王錦伍、岩久保建志(2017)” 音訊監測技術於高壓噴射樁徑確認之應用”, 第十七屆大地工程學術研究討論會論文集。
    8. 研究委員會(2006),”高壓噴射灌漿本土適用性研究-二重管高壓噴射灌漿工法”,地工技術,第108期,pp.19~pp.32。
    9. 徐偉強(2014)”高壓噴射灌漿成型樁切削音訊監測與驗證”,碩士論文,國立台灣科技大學營建工程系。
    10. Yong, D. M., Hayashi, K. and Chia, B. H. (1996), “Jet Grouting for Construction of a RC Canal in Soft Marine Clay,” Grouting and deep mixing: Procds., IS Tokyo 96, 2nd International conference on Ground Improvement Geosystems Tokyo, Japan, pp. 375-380.
    11. Chu, H. C., Wong, K. N., Liao, H. J. and Cheng, S. H. (2012), “Large diameter rapid jet grouting in Taipei silty soil”, Procds., 4th International Conference on Grouting and Deep Mixing, New Orleans, Louisiana, USA, February, Vol. 2, PP. 2132-2141.
    12. Kim, S. I., Kim, D. S., Park, H. C., & Kweon, G. C. (1997) , “SASW Method for the Evaluation of Ground Densification BY Dynamic Compaction,”In M. Davies, & F. Schlosser, Ground Improvement Geosystems, pp. 142-147.
    13. Donohue, S., & Long, M. (2008), “Ground improvement assessment of glacial till using shear wave velocity,” In A. Hung, & P. W. Mayne (Ed.), Geotechnical and Geophysical Site Characterization, pp. 825-830.
    14. Lin, C. P., Lin, C. H., Dai, Y. Z. and Chien, C. J. (2012), “Assessment of Gound Improvement with Improved Columns by Surface Wave Tsting”, Procds., 4th International Conference on Grouting and Deep Mixing, New Orleans, Louisiana, USA, February, Vol. 1, PP. 483-492.
    15. Wang, Z.F., Shen, S.L., and Yang, J. 2012. Estimation of the diameter of jet grouted column based on turbulent kinematic flow theory. In Proceedingsof the 4th International Conference on Grouting and Deep Mixing, New Orleans, La., 16–18 February 2012. American Society of Civil Engineers, New York, Vol. 2, pp. 2044–2051.
    16. Burke, G. K. (2012). “The state of the practice of jet grouting,” Proceedings of 4th International Conference on Grouting and Deep Mixing, February 16-18, New Orleans, Louisiana, USA, Vol. 2, pp. 74-88.
    17. Shen, S. L., Wang, Z. F., and Ho, C. E. (2014). “Current state of the art in jet grouting for stabilizing soft soil,” Proceedings of ground Improvement and Geosynthetics, May 26-28, Shanghai, China, pp. 107-116.
    18. Shen, S. L., Wang, Z. F., Yang, J., and Ho, C. E. (2013). “Generalized approach for prediction of jet grout column diameter,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 139, No. 12, pp.2060-2069.
    19. Modoni G., Croce P., Mongiovì L. (2006). Theoretical modelling of jet grouting. Géotechnique – Thomas Telford, vol. 56-5, pp. 335-347.
    20. Davidson, P. A. (2004). Turbulence: Oxford, UK, Oxford University Press: p678.

    無法下載圖示 全文公開日期 2026/02/13 (校內網路)
    全文公開日期 2026/02/13 (校外網路)
    全文公開日期 2026/02/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE