簡易檢索 / 詳目顯示

研究生: 巫書帆
Shu-Fan Wu
論文名稱: 以大型模型試驗探討MICP減緩降雨引致淺層崩塌之應用
Investigation on the Mitigation of Rainfall-Induced Shallow Landslides with MICP Remediation by Large-Scale Model Tests
指導教授: 鄧福宸
Fu-Chen Teng
口試委員: 郭治平
Chih-Ping Kuo
鄭世豪
Shih-Hao Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 164
中文關鍵詞: 地盤改良降雨入滲大型試驗布里淵光時域反射系統布里淵光時域分析系統邊坡破壞MICP減緩淺層崩塌
外文關鍵詞: MICP, Soil improvement, Rainfall infiltration, Large -scale model test, Brillouin Optical Time Domain Reflectometry, Brillouin Optical Time Domain Analysis, Slope failure, mitigation of shallow landslide
相關次數: 點閱:616下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微生物引致碳酸鈣沉澱為一新興之地盤改良技術,應用於基礎整治、液化減緩、水土保持等大地災害防治中顯示良好成效。此方法利用天然之土壤細菌來水解尿素,並誘導碳酸鈣沉澱,結合土壤顆粒並提升土壤之力學特性與抗蝕能力。
    本研究為探討MICP應用於減緩降雨引致淺層崩塌案例之可行性與適用性,先行以室內土壤力學試驗求取土壤基本物性、礦物成分、.不飽和水分特性曲線與土壤經MICP改良前後之工程性質,規劃以25%注漿率且菌液與膠結液各半之配比進行地盤改良。結果顯示改良後土體之排水摩擦角由原先 上升至 ,上升約2.07%;有效凝聚力則由原先 上升至 ,增加約83.39%,其中以凝聚力提升對於淺層邊坡土壤之剪力強度貢獻較為顯著,說明MICP相當適用於淺層邊坡地改;滲透係數經由改良後可下降約一個數量級;CPT試驗所測得表層土壤之錐尖阻抗亦有顯著增加。
    隨後本研究進行未改良縮尺模型試驗,以影像紀錄與水分、水壓計確認滑坡模式,結果顯示由粉土質砂組成之 有限邊坡於高降雨強度下將呈現坡址後退式崩塌與坡頂淺層崩塌,形成一複合式破壞,同時材料高細粒料含量特性終將轉為泥流破壞,伴隨數條蝕溝;最後則利用影像紀錄、水分與水壓計和分佈式光纖感測技術比較大型邊坡於改良前與改良後之減緩淺層崩塌成效,結果顯示坡頂與坡腹土壤應變經MICP改良後已大幅減少,說明MICP應用於減緩淺層崩塌效應具有相當成效。


    Applying Microbial Induced Calcite Precipitation(MICP), an emerging soil improvement technology, on the mitigation of some geotechnical hazards such as foundation improvement, liquefaction mitigation, soil and water conservation and so forth manifests an extraordinary outcome. This approach utilizes natural soil bacteria existing in soil to hydrolyze urea and induce calcite precipitation, which cements soil particles and improves the soil mechanical properties and corrosion resistance.
    In order to explore the feasibility and applicability of MICP remediation in rainfall-induced shallow landslide cases, this research process started with some soil mechanics laboratory tests to obtain physical properties, mineral components, SWCC curve, and engineering properties before and after MICP treatment, 、 and included. The treatment volume for soil improvement planned to occupy 25% of the void space and the propotion of biological solution to cementation solution would be one to one .The results showed that the drainage friction angle receives 2.07% increase from to ;the effective cohesion receives 83.39% increase from 1.96 kPa to 3.6 kPa, especially the increase of effective cohesion easily facilitates the shear strength of surface slope soil up, which means MICP treatment is a suitable soil improvement method in shallow landslide cases;permeability is about ten times less than the original permeability; from CPT test, the tip resistance for the surface soil also increases significantly.
    Subsequently, this study conducted an small-scale slope model test to confirm the failure behavior by images and data from water pressure transducers and moisture sensors. The results showed that a infinite slope composed of silty sand under a toerrential rainfall condition will be in from of a complex failure, which is comprised of retrogressive failure from toe and shallow failure at the crest of the slope;moreover, because the silty sand sample features a higher fine content, the failure type will eventually turn out mud flow, accompanied by several surface erosion.
    Finally, large-sacled slope model tests without and with MICP remidation would be conducted in order to confirm the mitigation effectiveness in rainfall-induced shallow landslide;hence, images, Distributed Fiber Optic Sensing technology, and data from water pressure transducers and moisture sensors would be used. The results showed that after MICP treatment, the strain at the crest &middle part of the slope is considerably decreased, which signifies adopting MICP technology to mitigate rainfall-induced shallow landslides is successful.

    第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究內容與方法 1 第二章 文獻回顧 3 2.1 坡地災害分類與台灣淺層崩塌地特性調查 3 2.2 降雨引致邊坡破壞行為與機制 6 2.3 不飽和土壤強度與不飽和邊坡隨降雨事件之穩定性分析 9 2.4 降雨引致邊坡破壞之物理模型試驗 17 2.4.1 縮尺模型試驗 17 2.4.2 大型模型試驗 26 2.4.3 全尺寸試驗 28 2.4.4 模型相似定律 31 2.4.5 離心機試驗 31 2.5 微生物引致碳酸鈣沉澱技術-MICP 37 2.5.1 微生物引致碳酸鈣沉澱機制 37 2.5.2 影響MICP之外部條件 40 2.5.3 MICP於大地工程之應用 46 2.6 地盤改良工法 51 2.6.1 滲透灌漿 52 第三章 MICP改良前後之室內試驗 53 3.1 土壤基本性質 53 3.1.1 比重試驗 53 3.1.2 粒徑分佈試驗 54 3.1.3 阿太堡試驗 56 3.1.4 化學成分分析 56 3.1.5 相對密度試驗 58 3.1.6 壓力平板試驗 (不飽和土壤水份特性曲線) 60 3.2 微生物引致碳酸鈣沉澱(MICP) 69 3.2.1 微生物介紹與培養盤製作 69 3.2.2 菌株與菌液培養流程 73 3.2.3 菌液濃度檢測 75 3.2.4 菌液濃度稀釋 77 3.3三軸飽和均向壓密排水試驗 (CID-TEST) 79 3.3.1 未改良重模試體製作 79 3.3.2 改良重模試體製作 - 以拌合工法進行MICP 85 3.3.3 結果比較 85 3.4 透水試驗 92 3.4.1 未改良重模試體製作 92 3.4.2 改良重模試體- 以拌合工法進行MICP 93 3.4.3 結果比較 93 3.5 圓錐貫入試驗 (CPT-TEST) 94 3.5.1 未改良重模試體 94 3.5.2 改良重模試體製作 - 以注入工法進行MICP 95 3.5.3 結果比較 96 3.6 土壤參數小結 97 第四章 邊坡模型試驗 98 4.1 砂箱模型設備 98 4.1.1 縮尺模型砂箱 98 4.1.2 大型模型砂箱 99 4.2 降雨系統配置 101 4.2.1 縮尺模型降雨設備 101 4.2.2 大型模型降雨設備 102 4.2.3 降雨強度與均勻度 105 4.3 數據量測系統 108 4.3.1 水份計 109 4.3.2 水壓計 111 4.3.3 分佈式光纖感測技術 (DFOS) 112 4.3.4 資料擷取系統 115 4.4 試驗規劃 117 4.4.1 試驗條件與模型相似性 117 4.4.2 儀器配置 118 4.4.3 邊坡模型構築流程 123 4.4.4 應用MICP於大型邊坡之試驗規劃 126 第五章 模型試驗結果 132 5.1縮模邊坡試驗(未改良) 132 5.1.1邊坡破壞歷程 132 5.1.2土壤含水量與孔隙水壓量測結果 135 5.2大型邊坡試驗(未改良與改良) 137 5.2.1邊坡破壞歷程 137 5.2.2光纖監測結果 140 5.2.3土壤含水量與孔隙水壓量測結果 155 第六章 結論與建議 158 6.1結論 158 6.2建議 158 參考文獻 160

    1. Abo-El-Enein, S., Ali, A., Talkhan, F. N., & Abdel-Gawwad, H. (2012). Utilization of microbial induced calcite precipitation for sand consolidation and mortar crack remediation. HBRC Journal, 8(3), 185-192.
    2. ASTM D422−63 Standard test method for particle-size analysis of soils. ASTM International, West Conshohocken, PA, USA
    3. ASTM D854−14 Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA, USA
    4. ASTM D2434−19 Standard test method for permeability of granular soils (constant head). ASTM International, West Conshohocken, PA, USA
    5. ASTM D2435/D2435M−11 Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM International, West Conshohocken, PA, USA
    6. ASTM D4253−161 Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken, PA, USA
    7. ASTM D4254 -16 Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM International, West Conshohocken, PA, USA
    8. ASTM D4318−171 Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken, PA, USA
    9. ASTM D5084−16a Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM International, West Conshohocken, PA, USA
    10. ASTM D5778−20 Standard test method for electronic friction cone and piezocone penetration testing of soils. ASTM International, West Conshohocken, PA, USA
    11. ASTM D6836−16 Standard test methods for determination of the soil water characteristic curve for desorption using hanging column, pressure extractor, chilled mirror hygrometer, or centrifuge. ASTM International, West Conshohocken, PA, USA
    12. ASTM D6913/D6913M−17 Standard test methods for for particle-size distribution (gradation) of soils using sieve analysis. ASTM International, West Conshohocken, PA, USA
    13. ASTM D7181−20 Standard test method for consolidated drained triaxial compression test for soils. ASTM International, West Conshohocken, PA, USA
    14. Baker, W. H. (1982, February). Planning and performing structural chemical grouting. In Mine Induced Subsidence: Effects on Engineered Structures (pp. 515-539). ASCE.
    15. Bishop, A. W. (1959). The principle of effective stress. Teknisk ukeblad, 39, 859-863.
    16. Boquet, E., Boronat, A., & Ramos-Cormenzana, A. (1973). Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature, 246(5434), 527-529.
    17. Cascini, L., Cuomo, S., Pastor, M., & Sacco, C. (2013). Modelling the post-failure stage of rainfall-induced landslides of the flow type. Canadian Geotechnical Journal, 50(9), 924-934.
    18. Cascini, L., Cuomo, S., Pastor, M., & Sorbino, G. (2010). Modeling of rainfall-induced shallow landslides of the flow-type. Journal of geotechnical and geoenvironmental engineering, 136(1), 85-98.
    19. Cheng, L., & Cord-Ruwisch, R. (2012). In situ soil cementation with ureolytic bacteria by surface percolation. Ecological Engineering, 42, 64-72.
    20. Christiansen, J. E. (1942). Irrigation by sprinkling (Vol. 4). Berkeley:University of California
    21. Day, J. L., Ramakrishnan, V., & Bang, S. S. (2003). Microbiologically induced sealant for concrete crack remediation. Paper presented at the Proc. of 16th Engineering Mechanics Conference (pp. 1-8).
    22. DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2), 197-210.
    23. Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2014). Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Applied biochemistry and biotechnology, 172, 2552-2561.
    24. Duncan, J. M., Wright, S. G., & Brandon, T. L. (2014). Soil strength and slope stability: John Wiley & Sons.
    25. Fang, Z., Chin, K., Qu, R., & Cai, H. (2012). Fundamentals of optical fiber sensors (Vol. 226): John Wiley & Sons.
    26. Fredlund, D. G., Morgenstern, N. R., & Widger, R. A. (1978). The shear strength of unsaturated soils. Canadian Geotechnical Journal, 15(3), 313-321.
    27. Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521-532.
    28. Gallage, C., Abeykoon, T., & Uchimura, T. J. S. (2021). Instrumented model slopes to investigate the effects of slope inclination on rainfall-induced landslides. Soils and foundations, 61(1), 160-174.
    29. Ghasemi, P., & Montoya, B. M. (2020). Field application of the microbially induced calcium carbonate precipitation on a coastal sandy slope. Paper presented at the Geo-Congress 2020 (pp. 141-149).
    30. Giannecchini, R. (2006). Relationship between rainfall and shallow landslides in the southern Apuan Alps (Italy). Natural hazards and earth system sciences, 6(3), 357-364.
    31. Gomez, M. G., Martinez, B. C., DeJong, J. T., Hunt, C. E., deVlaming, L. A., Major, D. W., & Dworatzek, S. M. (2015). Field-scale bio-cementation tests to improve sands. Proceedings of the Institution of Civil Engineers-Ground Improvement, 168(3), 206-216.
    32. Gorospe, C. M., Han, S. H., Kim, S. G., Park, J. Y., Kang, C. H., Jeong, J. H., & So, J.-S. (2013). Effects of different calcium salts on calcium carbonate crystal formation by sporosarcina pasteurii KCTC 3558. Biotechnology and bioprocess engineering, 18, 903-908.
    33. Gowthaman, S., Mitsuyama, S., Nakashima, K., Komatsu, M., & Kawasaki, S. (2019). Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: A feasibility study on Hokkaido expressway soil, Japan. Soils and foundations, 59(2), 484-499.
    34. Ho, D. Y. F., & Fredlund, D. (1982). Increase in Strength Due to Suction for Two Hong Kong Soils. In Proceedings of the ASCE specialty conference on engineering and construction in tropical and residual soils, Hawaii (pp. 263-296).
    35. Huang, C. C., & Yuin, S. C. (2010). Experimental investigation of rainfall criteria for shallow slope failures. Geomorphology, 120(3-4), 326-338.
    36. Li, A.-J., Mburu, J. W., Chen, C. W., & Yang, K.-H. (2022). Investigations of Silty Soil Slopes under Unsaturated Conditions Based on Strength Reduction Finite Element and Limit Analysis. KSCE Journal of Civil Engineering, 1-16.
    37. Matziaris, V., Marshall, A., Heron, C., & Yu, H. (2015). Centrifuge model study of thresholds for rainfall-induced landslides in sandy slopes. Paper presented at the IOP Conference Series: Earth and Environmental Science (Vol. 26, No. 1, p. 012032).IOP Publishing.
    38. Mein, R. G., & Larson, C. L. (1973). Modeling infiltration during a steady rain. Water resources research, 9(2), 384-394.
    39. Moriwaki, H., Inokuchi, T., Hattanji, T., Sassa, K., Ochiai, H., & Wang, G. (2004). Failure processes in a full-scale landslide experiment using a rainfall simulator. Landslides, 1, 277-288.
    40. Santacana, N., Baeza, B., Corominas, J., De Paz, A., & Marturiá, J. (2003). A GIS-Based Multivariate Statistical Analysis for Shallow Landslide Susceptibility Mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). Natural Hazards, 30(3), 281-295.
    41. Sun, Y., Shi, B., Zhang, D., Tong, H., Wei, G., & Xu, H. (2016). Internal deformation monitoring of slope based on BOTDR. Journal of Sensors.
    42. Teng, F., Ouedraogo, C., & Sie, Y.-C. (2020). Strength improvement of a silty clay with microbiologically induced process and coir fiber. Journal of GeoEngineering, 15(2), 79-88.
    43. Todaro, C. (2021). Grouting of cohesionless soils by means of colloidal nanosilica. Case Studies in Construction Materials, 15, e00577.
    44. Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, No.5,892-898.
    45. van Paassen, L. A., Ghose, R., van der Linden, T. J., van der Star, W. R., & van Loosdrecht, M. C. (2010). Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. Journal of geotechnical and geoenvironmental engineering, 136(12), 1721-1728.
    46. Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33.
    47. Wang, G., & Sassa, K. (2003). Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Engineering geology, 69(1-2), 109-125.
    48. Wang, R., & Qian, C. (2008). Restoration of defects on the surface of cement-based materials by microbiologically precipitated CaCO3. JOURNAL CHINESE CERAMIC SOCIETY, 36(4), 457.
    49. Wang, S., Idinger, G., & Wu, W. (2021). Centrifuge modelling of rainfall-induced slope failure in variably saturated soil. Acta Geotechnica, 16(9), 2899-2916.
    50. Whiffin, V. S. (2004). Microbial CaCO3 precipitation for the production of biocement. (Doctoral dissertation, Murdoch University).
    51. Zullo, R., Verdolotti, L., Liguori, B., Lirer, S., Salzano de Luna, M., Malara, P., & Filippone, G. (2020). Effect of rheology evolution of a sustainable chemical grout, sodium-silicate based, for low pressure grouting in sensitive areas: Urbanized or historical sites. Construction and Building Materials, 230, 117055.
    52. 吳昱葵(2020),物質點法分析邊坡崩塌過程與運動機制:以貓空邊坡為例,碩士論文,國立臺灣大學。
    53. 李金龍(2006),探討降雨與淺層崩塌關係之大型試驗,碩士論文,國立暨南國際大學。
    54. 林冠良(2015),滲流與應力耦合分析探討降雨導致不飽和邊坡不穩定之機制,碩士論文,國立臺灣科技大學。

    55. 林宸瑋(2021),以縮尺模型探討MICP於邊坡崩坍整治之應用,碩士論文,國立臺灣科技大學。
    56. 林德貴、王勝賢、鄒瑞卿及許聖富(2017),施設背拉式排樁未飽和邊坡之降雨滲流穩定性分析,中華水土保持學報,第48卷1期,(pp. 14-26)。
    57. 拱祥生(2011),不飽和紅土基質吸力行為及其在工程上之應用,博士論文,國立臺灣科技大學。
    58. 范嘉程、黃俊龍(2012),頁岩風化不飽和土壤之土壤水分特性曲線,中華水土保持學報,第43卷3期,(pp. 197-205)。
    59. 陳均維(2017),多階加勁邊坡受降雨入滲破壞之試驗與分析研究,碩士論文,國立臺灣科技大學。
    60. 陳尚奕(2009),粒徑分佈狀況對不飽和崩積土壤吸力之研究,碩士論文,國立臺灣科技大學。
    61. 陳進福(2002),利用自發性布里淵散射量測不同光纖的超音波傳輸特性,碩士論文,國立交通大學。
    62. 陳豪吉、蔡祁欽及陳建易(2018),土壤液化造成河堤破壞成因與防治技術研究,經濟部水利署水利規劃試驗所。
    63. 陳樹群、陳冠翰及吳俊鋐(2012),地下水引發自由端順向坡土體滑動特性分析,中華水土保持學報,第45卷2期,(pp. 110-118)。
    64. 曾婷苓(2020),加勁擋土牆受降雨入滲作用下之物理模型試驗研究,碩士論文,國立臺灣大學。
    65. 黃景川、駱建利、朱奕璋、胡立康、李金龍、張家薰及雲世傑(2011),降雨引發淺層邊坡破壞機制,中華水土保持學報,第42卷3期,(pp. 184-195)。
    66. 詹勳全、張嘉琪、陳樹群、魏郁軒、李桃生及王昭堡(2015),台灣山區淺層崩塌地特性調查與分析,中華水土保持學報,第46卷1期,(pp. 19-28)。
    67. 廖鴻鈞、陳福勝(2006),地盤改良設計施工及案例,科技圖書有限公司。
    68. 蔡和倫(2011),邊坡入滲與土體位移行為研究之大型試驗,碩士論文,國立屏東科技大學。
    69. 蔡明宏(2011),三軸壓縮試驗下加勁土壤力學行為與加勁材應變發展之研究,碩士論文,國立臺灣科技大學。
    70. 藍少村(2008),降雨導致淺層邊坡破壞之模型試驗與分析,碩士論文,國立成功大學。

    無法下載圖示
    全文公開日期 2026/08/31 (校外網路)
    全文公開日期 2026/08/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE