簡易檢索 / 詳目顯示

研究生: 羅科閔
Ke-Min Luo
論文名稱: 25 Gbaud/s PAM-4調變電路整合於光傳輸模組
Integration of 25Gbaud/s PAM-4 Modulation Circuits for Optical Transmitters
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
San-Liang Lee
黃凡修
Fan-Hsiu Huang
周一鳴
YI-MING Chou
曾昭雄
Chao-Hsiung Tseng
楊淳良
Chun-liang Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 78
中文關鍵詞: 調變電路光傳輸模組
外文關鍵詞: 25Gbaud/s, Optical Transmitters
相關次數: 點閱:192下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

因應高速傳輸通訊的需求,如何增加通道頻寬與資料量已成為研發技術的重點。相較於NRZ訊號,PAM-4訊號只需使用一半頻寬便能以相同的數據速率進行傳輸,且有較低的非均勻通道之相關損耗,因此使用PAM-4訊號進行傳輸無疑是一種更可行的解決方案。
本論文成功展示PAM-4調變驅動晶片,能產生良好的25 Gbaud/s PAM-4電訊號,並利用偏壓控制輸出眼圖的振幅準位,依據其模擬與量測結果,討論有無驅動電路及輸入訊號之速率、振幅、延遲時間變化的表現,從而判斷量測誤差的可能原因並給予改善方向。
最後,本論文探討將上述驅動IC與電致吸收調變雷射進行整合模擬,主要利用電致吸收調變雷射的等效電路模型,得以模擬完整的光傳輸模組傳輸訊號時的情況,並探討模組最佳化的方式,其結果將有利於後續實現400 Gb/s的光傳輸模組。


Increasing the channel bandwidth and data rates is the main focus of research and development in optical communication industry to meet the demands of high-speed optical transmission and interconnect. Compared to the NRZ signal, PAM4 signals require half the bandwidth to transmit at the same data rate and have lower channel-dependent loss, so they have become a feasible solution for transmission at high data rates.
This paper successfully demonstrates the PAM-4 modulation driver IC to provide 25 Gbaud/s PAM-4 signals. The driver IC allows to change the bias voltages to control the four level of the output eye diagram. Based on the simulation and measurement results, we discussed the performance for adjusting the operation parameters, including the baud rate of input signals, signal amplitude, and the delay time. The measurement with and without a buffer circuit is also compared. We then investigate the difference between the simulation and measurement for the future improvement of the modulation circuits.
This thesis also presents the co-simulation of an electroabsortion-modulated laser (EML) and its driving circuits by adopting an equivalent circuit for the EML. This allows to optimize and realize an EML-based optical transmitter. The results lay a foundation for the subsequent implementation of 400 Gb/s optical transceivers.

摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 XII 第一章 導論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻探討 4 1.4 論文架構 10 第二章 調變訊號PAM-4介紹與模擬 11 2.1 前言 11 2.2 訊號調變方式 11 2.2.1 不歸零編碼訊號調變訊號 11 2.2.2 四階脈衝振幅調變訊號 13 2.2.3 PAM-4傳輸系統的挑戰 15 2.3 PAM-4 調變驅動IC介紹 17 2.3.1 PAM-4調變電路介紹 17 2.3.2 PAM-4調變電路模擬 18 2.3.3 PAM-4調變電路佈局與成品 21 第三章 PAM-4調變驅動IC量測與分析 24 3.1 前言 24 3.2 PAM-4調變驅動IC量測架構 25 3.3 PAM-4調變驅動IC量測結果 26 3.3.1 驅動電路(Buffer)之影響 26 3.3.2 不同速率下之量測結果 29 3.3.3 量測結果分析與優化方向 35 第四章 光傳輸模組驗證與優化 41 4.1 前言 41 4.2 光傳輸模組 42 4.2.1 傳輸線設計與偏壓電路 43 4.2.2 EML TOSA電路 45 4.2.3 光傳輸系統模擬與量測 49 4.3 EML內部回授影響 50 4.3.1 EML小訊號等效電路模型 50 4.3.2 經EML頻率響應之NRZ眼圖模擬 52 4.3.3 經EML頻率響應之PAM-4眼圖模擬 60 4.4 EML等效電路模組優化 65 4.4.1 EML之頻寬優化 65 4.4.2 EML之阻抗優化 68 4.4.3 光傳輸模組優化之挑戰 71 4.4.4 PAM-4調變電路結合光傳輸模組 74 第五章 結論 75 5.1 成果 75 5.2 未來研究方向 76 5.2.1 400Gb/s光傳輸模組 76 5.2.2 TOSA模組 76 參考文獻 77

[1] E. Alliance. ( 2018). New 2018 Ethernet Roadmap Looks to Future Speeds of 1.6 Terabits.
Available:https://insidehpc.com/2018/03/new-2018-ethernet-roadmap-looks-future-speeds-1-6-terabits-s/
[2] Tektronix, “Analyzing 26-53 GBaud PAM4 Optical and Electrical Signals,” APPLICATION NOTE 2018.
[3] N. Quadir, P. Ossieur, and P. D. Townsend, “A 56Gbps PAM-4 VCSEL driver circuit,” ISSC 2012, June 28-29 2012.
[4] M. N. T. Kishi, S. Kanazawa, W. Kobayashi, H. Yamazaki, M. Ida, K. Kurishima, M. Nogawa, S. Kimura, and H. Nosaka., “56-Gb/s Optical Transmission Performance of an InP HBT PAM4 Driver Compensating for Nonlinearity of Extinction Curve of EAM,” Journal of Lightwave Technology, vol. 35, no. 1, pp. 75-81, 2017.
[5] 黃凡修, “10Gbps 光纖通訊系統傳送接收電路,” 國立中央大學碩士論文 2002.
[6] Intel, “AN 835: PAM4 Signaling Fundamentals,” APPLICATION NOTE, March 12 2019.
[7] Tektronix, “PAM-4 Analysis,” APPLICATION NOTE September 12 2018.
[8] A. P. A. Sanyal, and S. Kundu, “A Study on Impact of Loading Effect on Capacitive Crosstalk Noise,” 10th Int'l Symposium on Quality Electronic Design, 2009.
[9] E. Agrell, J. Lassing, E. G. Strm, and T. Ottosson, “Gray Coding for Multilevel Constellations in Gaussian Noise,” IEEE Transactions on Information Theory, vol. 53, no. 1, pp. 224-235, 2007.
[10] W. Dejing, Z. Yuanfu, Y. Quanbin, C. Yusheng, L. Binhao, and Z. Hongshuo, “Electrical Simulation of Gold Bonding Wire,” 16th International Conference on Electronic Packaging Technology, 2015.
[11] D. K. J. I. Ryu, S.H. Park, J. C. Park, and J. C. Kim, “Investigation of an Embedded RF Switch IC in Printed-CircuitBoard,” 2008 Electrical Design of Advanced Packaging and Systems Symposium, 2008.
[12] K. A. Belaid, H. Belahrach, and H. Ayad, “Analysis and Reduction of Simultaneous Switching Noise in Fast,” vol. 35, pp. 47-51, 2018.
[13] A. J. B. P. Brokaw, “Grounding for Low- and High-frequency Circuits,” Analog Dialogue, vol. 23, no. 3, pp. 7-9, 1989.
[14] X. S. L. Zeng, J. Man, W. Chen, and W. Zhou, “Pam4 Transmission For Short Reach Optical Interconnection,” 14th International Conference on Optical Communications and Networks (ICOCN), 2015.
[15] 王皓練, “16×25 Gb/s單模光傳收模組的高速電路板優化與傳輸效能驗證,” 國立台灣科技大學碩士論文 2019.
[16] 邱譯緯, “EML等效電路設計與光傳輸模組整合模擬,” 國立台灣科技大學碩士論文 2018.
[17] Y. T. H. O. K. Kwon, Y. S. Baek, and Y. C. Chung, “Improvement of modulation bandwidth in electroabsorption-modulated laser by utilizing the resonance property in bonding wire,” Optical Society of America, OPTICS EXPRESS 2012.
[18] G. C. a. Y. Jeong, “Negative Group Delay Phenomenon Analysis Using Finite Unloaded Quality Factor Resonators,” Progress In Electromagnetics Research, vol. 156, pp. 55-62, 2016.

QR CODE