簡易檢索 / 詳目顯示

研究生: 林太森
Tai-Sen Lin
論文名稱: 以現場可程式化閘陣列實現 三維延遲矩陣式數位至時間轉換器與 脈衝縮放延遲式數位脈波寬度調變電路
FPGA DTC Based on 3- Dimension Delay Matrix and DPWM Based on Pulse Shrinking Delay Line
指導教授: 陳伯奇
Poki Chen
口試委員: 陳伯奇
Poki Chen
鍾勇輝
Yung-Hui Chung
黃育賢
Yuh-Shyan Hwang
盧志文
Chih-Wen Lu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 113
中文關鍵詞: 現場可程式化閘陣列數位至時間轉換電路鎖相迴路延遲迴繞排序與選擇機制數位脈波寬度調變脈衝縮放工作週期
外文關鍵詞: Field Programmable Gate Array, Digital-to-Time Converter, Phase-Locked Loop, Delay Wrapping, Sorting and Selection, Digital Pulse Width Modulation, Pulse Shrinking, Duty Cycle
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出兩個以利用現場可程式化閘陣列(FPGA)所實現的電路架構,分別是以鎖相迴路(PLL)與延遲矩陣所設計之數位至時間轉換器(DTC) ,與基於脈衝縮放延遲線(PSDL)設計的數位脈波寬度調變(DPWM)電路。並探討FPGA在受限的設計環境下實現本論文所提出架構的利弊得失。
    本論文介紹了兩種高精度DTC的設計方法,兩者以不同的技術對PLL進行精細控制,並受益於PLL負迴授的特性使得各級延遲在外部環境影響下保持較高一致性,透過延遲迴繞(Wrapping)效應所產生的延遲與相位轉換,設計出高精度低抖動DTC。兩種DTC分別以兩塊FPGA: Intel Altera Stratix IV與Xilinx Virtex-6實現。Stratix IV時間解析度為2ps、微分非線性(DNL)為-3.6 ~ 3.25 LSB、積分非線性(INL)為-2.5 ~ 3.0 LSB,輸出抖動(Jitter)則是4.9 LSB。Virtex-6解析度是1.94ps、DNL是-3.3 ~ 3.7 LSB、INL是-2.8 ~ 2.7 LSB,Jitter則是8.9 LSB。
    本論文同步提出一種高精度DPWM設計。利用PLL實現工作週期分割,搭配延遲元件的脈衝縮放特性,為提升元件解析度提供了嶄新的想法。此架構於Intel Altera Stratix IV與Arria 10這兩種FPGA實現。其中Stratix IV時間解析度為4.8ps、DNL是-3.0~2.9 LSB、INL是-3.0~2.9 LSB,Jitter則是3.6 LSB,Arria 10解析度是6.1ps、DNL是-2.2~2.7 LSB、INL是-1.5~1.6 LSB,Jitter則是2.8 LSB。


    This thesis proposes two new architectures implemented wit Field Programmable Gate Arrays (FPGA). One is Digital-to-Time Converter (DTC) composed of a Phase-Locked Loop (PLL) and a Delay Matrix. The other is Pulse-Shrinking Delay Line (PSDL) based Digital Pulse Width Modulation (DPWM). The pros and cons of proposed architecture due to the limited design environment and abundant design resources of FPGA will be discussed in detail.
    This thesis presents two high-precision DTCs. Both use different techniques to finely control the PLL to be benifited by the negative feedback of PLL to reduce the impact of the PVT variations on the respective high accuracy delays. Based on the delay wrapping, a high-precision low-jitter DTC is realized. The DTCs are implemented with two FPGAs: Intel Altera Stratix IV and Xilinx Virtex-6. Stratix IV DTC has a time resolution of 2ps, differential nonlinearity (DNL) of -3.6 ~ 3.25 LSB, integral nonlinearity (INL) of -2.5 ~ 3.0 LSB, and output jitter (Jitter) of 4.9 LSB. Virtex-6 DTC has 1.94ps resolution, -3.3 ~ 3.7 LSB DNL, -2.8 ~ 2.7 LSB INL and 8.9 LSB Jitter.
    This thesis also proposes a high-precision DPWM. PLL is used for duty cycle division which is combined with the Pulse-Shrinking delay elements to provide a brand new architecture for improving DPWM resolution. This circuit is implemented with two FPGAs, Intel Altera Stratix IV and Arria 10. The Stratix IV version has 4.8ps resolution, -3.0~2.9 LSB DNL, -3.0~2.9 LSB INL and 3.6 LSB Jitter. The Arria 10 version has 6.1ps resolution, -2.2~2.7 LSB DNL, -1.5~1.6 LSB INL and 2.8 LSB jitter.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第1章 緒論 1 1-1 研究動機 1 1-2 時域類比電路 2 1-3 論文架構 3 第2章 數位至時間轉換器與數位脈波寬度調變電路 4 2-1 數位至時間轉換器簡介 4 2-2 數位至時間轉換電路之架構介紹與說明 5 2-2-1 以延遲線為基礎的DTC架構 5 2-2-2 計數器式DTC架構 6 2-2-3 延遲矩陣式DTC架構 8 2-2-4 鎖相迴路矩陣精密相位分割式DTC架構 9 2-3 數位脈波寬度調變電路簡介 13 2-4 數位脈波寬度調變電路之架構介紹與說明 15 2-4-1 以延遲線實現 DPWM 15 2-4-2 以相位偏移 (Phase Shifting) 實現 DPWM 17 2-4-3 以脈衝縮放 (Pulse Shrinking) 實現 DPWM 17 第3章 本論文所提出之架構與電路實現 21 3-1 三維延遲矩陣數位至時間轉換器 21 3-1-1 PLL實現相位分割 23 3-1-2 二維延遲矩陣 25 3-1-3 計數器粗級電路(Coarse Stage ) 28 3-2 脈波縮放法實現數位脈波調變 29 3-2-1 以鎖相環實現工作週期分割 30 3-2-2 脈波縮放延遲矩陣 31 3-3 本論文提出之以FPGA實現之電路 35 3-3-1 PLL架構與功能 35 3-3-2 FPGA延遲線設計 39 3-3-3 粗級計數器電路概念 43 第4章 已知問題與補償方法 46 4-1 輸出抖動 46 4-2 輸出相位邊際效應 47 4-3 粗級補償 48 4-4 多工器延遲 48 4-5 時序平移與冗餘相位 49 4-6 邏輯鎖與設計區塊 50 4-7 手動元件佈置 53 4-8 自動量測輔助校正法 57 第5章 軟硬體操作環境 59 5-1 DTC與DPWM之控制環境 59 5-2 數位控制輸入面板 60 5-3 UART輸入傳輸控制介面 61 5-3-1 UART傳輸技術與CRC驗證邏輯 61 5-3-2 數位控制字組暫存器 63 5-3-3 跨電壓轉換 64 5-4 量測環境與設備 65 5-4-1 數位示波器 66 5-4-2 FPGA開發平台介紹 69 5-4-3 本論文所使用之FPGA開發板 71 5-4-4 LVDS 傳輸介面與介面轉換板 73 第6章 分析、校正與正規化 76 6-1 時序模擬 76 6-1-1 行為模擬 (Behavior Simulation) 76 6-1-2 後實現模擬(Post-Implement Simulation) 76 6-1-3 利用Timing Analyzer 進行時序分析 77 6-2 校正與正規化流程 78 第7章 自動量測環境 87 7-1 Sikulix 軟體介紹 87 7-2 量測流程與自動化 87 第8章 實驗與量測結果 89 8-1 數位至時間轉換器量測項目 89 8-2 數位脈波寬度調變電路量測項目 98 8-3 元件用量分析 102 8-4 FPGA長時間穩定度量測 103 8-4-1 DTC量測總結 104 8-4-2 DPWM量測總結 106 第9章 總結及未來展望 108 9-1 數位至時間轉換器 108 9-2 數位脈波調變電路 109 參考文獻 110

    [1] J. Chapman, J. Currin, and S. Payne, "A low-cost high-performance CMOS timing vernier for ATE," in Proceedings of 1995 IEEE International Test Conference (ITC), 21-25 Oct. 1995 1995, pp. 459-468.
    [2] Y. Miyake, S. Kajihara, and P. Chen, "On-Chip Test Clock Validation Using A Time-to-Digital Converter in FPGAs," in 2019 IEEE International Test Conference in Asia (ITC-Asia), 3-5 Sept. 2019 2019, pp. 157-162.
    [3] J. Chapman, "High-performance CMOS-based VLSI testers: timing control and compensation," in Proceedings International Test Conference 1992, 20-24 Sept. 1995 1992, p. 59.
    [4] J. A. Gasbarro and M. A. Horowitz, "Integrated pin electronics for VLSI functional testers," IEEE Journal of Solid-State Circuits, vol. 24, no. 2, pp. 331-337, 1989.
    [5] T. Otsuji and N. Narumi, "A 10-ps resolution, process-insensitive timing generator IC," IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1412-1417, 1989
    [6] T. Otsuji and N. Narumi, "A 3-ns range, 8-ps resolution, timing generator LSI utilizing Si bipolar gate array," IEEE Journal of Solid-State Circuits, vol. 26, no. 5, pp. 806-811, 1991.
    [7] Intel-Altera®, "Stratix IV Device Handbook Volume 4: Device Datasheet and Addendum," 2014. [Online]. Available: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-iv/stx4_5v4.pdf.
    [8] P. Chen et al., "High-Precision PLL Delay Matrix With Overclocking and Double Data Rate for Accurate FPGA Time-to-Digital Converters," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 4,pp. 904-913, 2020.
    [9] J. Christiansen, "An integrated high resolution CMOS timing generator based on an array of delay locked loops," IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 952-957, 1996.
    [10] J. Y. Won, S. I. Kwon, H. S. Yoon, G. B. Ko, J. Son, and J. S. Lee, "Dual-Phase Tapped-Delay-Line Time-to-Digital Converter With On-the-Fly Calibration Implemented in 40 nm FPGA," IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 1, pp. 231-242, 2016.
    [11] 王瑞霆, "以現場可程式化閘陣列實現鎖相迴路延遲環繞矩陣法及精密相位偏移控制法之高性能數位對時間轉換器," 碩士, 電子工程系, 國立臺灣科技大學, 台北市, 2020. [Online]. Available: https://hdl.handle.net/11296/5zp2q8
    [12] 陳翔渝, "以現場可程式化閘陣列實現延遲迴繞搭配排序與選擇機制之時間至數位轉換器及雙鎖相迴路與精密相位偏移控制法之數位至時間轉換器," 碩士, 電子工程系, 國立臺灣科技大學, 台北市, 2021. [Online]. Available: https://hdl.handle.net/11296/tuecgk
    [13] A. Syed, E. Ahmed, D. Maksimovic, and E. Alarcon, "Digital pulse width modulator architectures," in 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), 20-25 June 2004 2004, vol. 6, pp. 4689-4695 Vol.6.
    [14] H. C. Chen, "Design of a Counter-Based DPWM Using RC Charge," in 2014 International Symposium on Computer, Consumer and Control, 10-12 June 2014 2014, pp. 1267-1270.
    [15] D. Costinett, M. Rodriguez, and D. Maksimović, "Simple Digital Pulse Width Modulator with 60 picoseconds resolution using a low-cost FPGA," in 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), 4-6 Sept. 2012 2012, pp.
    [16] M. G. Batarseh, W. Al-Hoor, L. Huang, C. Iannello, and I. Batarseh, "Segmented Digital Clock Manager- FPGA based Digital Pulse Width Modulator Technique," in 2008 IEEE Power Electronics Specialists Conference, 15-19 June 2008 2008, pp. 3036-3042.
    [17] P. Chen, S.-L. Liu, and J. Wu, "A CMOS pulse-shrinking delay element for time interval measurement," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 9, pp. 954-958, 2000.
    [18] P. Chen, T. Chen, H. Hu, Y. Peng, and Y. Chen, "A digital pulse width modulator based on pulse shrinking mechanism," in 2009 International Conference on Power Electronics and Drive Systems (PEDS), 2-5 Nov. 2009 2009, pp. 833-836.
    [19] 劉正偉, "具數位自我校正之寬頻高精度數位脈衝寬度調變器," 碩士, 電子工程系, 國立臺灣科技大學, 台北市, 2011. [Online]. Available: https://hdl.handle.net/11296/z6e768
    [20] T. A. Demassa and Z. Ciccone, Digital Integrated Circuits. 1996.
    [21] N. R. d. Menezes, H. D. Hernandez, D. Carvalho, and W. V. Noije, "All-digital FPGA-based RF pulsed transmitter with hardware complexity reduction techniques," in 2020 33rd Symposium on Integrated Circuits and Systems Design (SBCCI), 24-28 Aug. 2020 2020, pp. 1-5.
    [22] K. Ji-Wei, H. Shi-Yu, and K. Ding-Ming, "A high-resolution all-digital duty-cycle corrector with a new pulse-width detector," in 2010 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), 15-17 Dec. 2010 2010, pp. 1-4.
    [23] P. Chen, S. Chen, Y. Shen, and Y. Peng, "All-Digital Time-Domain Smart Temperature Sensor With an Inter-Batch Inaccuracy of -0.7˚C~+0.6˚C After One-Point Calibration," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 5, pp. 913-920, 2011.
    [24] T. Iizuka, T. Koga, T. Nakura, and K. Asada, "A fine-resolution pulse-shrinking time-to-digital converter with completion detection utilizing built-in offset pulse," in 2016 IEEE Asian Solid-State Circuits Conference (A-SSCC), 7-9 Nov. 2016 2016, pp. 313-316.
    [25] R. Szplet and K. Klepacki, "An FPGA-Integrated Time-to-Digital Converter Based on Two-Stage Pulse Shrinking," IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 6, pp. 1663-1670, 2010.
    [26] Intel-Altera®, "Implementing PLL Reconfiguration in Stratix III and Stratix IV Devices," 2012. [Online]. Available: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/an/an454.pdf.
    [27] Xilinx®, "Virtex-6 FPGA Clocking Resources User Guide " 2014. [Online]. https://www.xilinx.com/support/documentation/user_guides/ug362.pdf.
    [28] Intel-Altera®, "Quartus® Prime Standard Edition User Guide - Design Optimization," 2021. [Online]. Available: https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-software/user-guides.html.
    [29] 德源科技®, "英國原裝晶片 FTDI FT232RL、USB 轉 TTL串口." [Online]. Available: http://twarm.com/commerce/product_info.php?products_id=11128.
    [30] Tektronix. Inc. "Digital Phosphor Oscilloscopes/Digital Serial Analyzers DPO/DSA70000 Series Data Sheet." https://download.tek.com/datasheet/4HW_19377_15_0.pdf (accessed.
    [31] Intel-Altera®, "Arria® 10 Core Fabric and General Purpose I/Os Handbook," 2021. [Online]. Available: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/arria-10/a10_handbook.pdf.
    [32] Intel-Altera®, "Stratix IV GX FPGA Development Board Reference Manual," 2012. [Online]. Available: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/rm_sivgx_fpga_dev_board.pdf.
    [33] Intel-Altera®, "Arria 10 FPGA Development Kit User Guide," 2021. [Online]. https://www.intel.com/content/dam/support/us/en/programmable/support-resources/bulk-container/support/boards-kits/arria10/fpga/a10-fpga-dk-ug.pdf
    [34] Xilinx®. "Virtex-6 Family Overview." https://www.xilinx.com/support/documentation/data_sheets/ds150.pdf (accessed.
    [35] IEEE, "IEEE Standard for Low-Voltage Differential Signals (LVDS) for Scalable Coherent Interface (SCI)," IEEE Std 1596.3-1996, pp. 1-34, 1996.
    [36] Terasic, "產品分類:子板." [Online]. Available: https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=Taiwan&CategoryNo=82.
    [37] Intel-Altera®, "Arria 10 GX FPGA Development Kit (Schematic)," 2016. https://www.mouser.com/pdfDocs/A10GX_PCIE_Schematic.pdf.
    [38] Intel-Altera®, "Overview for the Stratix IV Device Family," 2020.
    [39] UMC®, "Xilinx Virtex-6 FPGA Family Achieves Full Production Qualification on UMC's High-Performance 40nm Process," 2010. Available: https://www.umc.com/en/News/press_release/Content/technology_related/20100120.
    [40] P. Kwiatkowski and R. Szplet, "Digital-to-time converter with pulse train generation capability," in 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 14-17 May 2018 2018, pp. 1-6.
    [41] M. Zhang, H. Wang, and Y. Liu, "Digital-to-Time Converter with 3.93 ps Resolution Implemented on FPGA Chips," IEEE Access, vol. 5, pp. 6842-6848, 2017.
    [42] Y. Yao, Z. Wang, H. Lu, L. Chen, and G. Jin, "Design of time interval generator based on hybrid counting method," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 832, pp. 103-107, 2016/10/01/ 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0168900216306076.
    [43] I. Vornicu, R. Carmona-Galán, and A. Rodríguez-Vázquez, "Wide range 8ps incremental resolution time interval generator based on FPGA technology," in 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), 7-10 Dec. 2014 2014, pp. 395-398.
    [44] P. Kwiatkowski, Z. Jachna, K. Różyc, and J. Kalisz, "Accurate and low jitter time-interval generators based on phase shifting method," Review of Scientific Instruments, vol. 83, no. 3, p. 034701, 2012. https://doi.org/10.1063/1.3690383.
    [45] A. d. Castro and E. Todorovich, "High Resolution FPGA DPWM Based on Variable Clock Phase Shifting," IEEE Transactions on Power Electronics, vol. 25, no. 5, pp. 1115-1119, 2010.
    [46] K. Cheng, "Implementation of High Resolution Digital Pulse Width Modulator Based on FPGA," in 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), 11-13 Dec. 2019 2019, pp. 1-5.
    [47] X. Cheng, W. Shao, L. Xu, Y. Zhang, G. Xie, and Z. Zhang, "A High Resolution DPWM Based on Synchronous Phase-Shifted Circuit and Delay Line," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 8, pp. 2685-2692, 2020

    無法下載圖示 全文公開日期 2027/08/16 (校內網路)
    全文公開日期 2037/08/16 (校外網路)
    全文公開日期 2037/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE