簡易檢索 / 詳目顯示

研究生: 葉祐任
You-Ren Yeh
論文名稱: 層狀過量鋰陰極材料之合成及其表面修飾對電池性能增進機制之研究
Synthesis of Lithium-Rich Layered Cathode Material and Investigation into the Enhanced Mechanism of Its Cell Performance via Surface Modification
指導教授: 郭俞麟
Yu-Lin Kuo
黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 85
中文關鍵詞: 鋰離子二次電池球狀二次粒子表面修飾PEDOTPSS普魯士藍
外文關鍵詞: spherical secondary particle, surface modification.
相關次數: 點閱:362下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討鋰離子二次電池之層狀過量鋰陰極材料Li(Li1/3-2x/3NixMn2/3-x/3)O2,因具有高電容量(> 250 mAh/g)之優異效能,將可成為新一代鋰離子電池之陰極材料。首先利用共沉澱法(co-precipitation)合成出球狀形態且高質量密度之過量鋰二次粒子前驅物,再加入碳酸鋰鍛燒成層狀過量鋰陰極材料Li(Li1/3-2x/3NixMn2/3-x/3)O2。共沉澱反應時可藉由調整pH值、反應溫度及前驅物濃度等參數,控制二次粒子尺寸大小及均勻性。但因Li(Li1/3-2x/3NixMn2/3-x/3)O2結構穩定性差,透過加入鈷離子來穩定結構並合成Li1.2Ni0.13Mn0.54Co0.13O2陰極材料且電容量高達250mAh/g。
    陰極材料於充放電過程中,會因與電解液反應使得電池電容量隨循環圈數而持續下降,並發現可利用陰極材料表面修飾抑制副反應的發生,提升電池穩定性。首先利用PEDOT:PSS有機材料表面修飾於球狀過量鋰陰極材料,以提高導電度,並改善高速充放電下電容量的衰退與增加充放電的穩定性。另外一種方式,則是將過量鋰陰極材料塗佈成電極材料再以普魯士藍材料沾溼塗佈於表面,以抑制電極材料表面與電解液反應,並提高充放電循環壽命。


    Owing to the high energy density and power capability properties, the layered lithium-rich cathode materials, Li (Li1/3-2x/3NixMn2/3-x/3)O2, have become one of potential cathode materials for lithium secondary battery. Using co-precipitation method, it is possible to effectively synthesize lithium-rich secondary particles in a perfect spherical morphology and with high packing density. By adjusting the pH value, reaction temperature, and precursor concentration, the uniformity and the size of the secondary particles can be controlled. Nevertheless, Li (Li1/3-2x/3NixMn2/3-x/3)O2 has poor structural stability. Therefore, cobalt ions are usually added to improve the structural stability and the capacity of the synthesized Li1.2Ni0.13Mn0.54Co0.13O2 cathode powder is also increased to 250 mAh/g.
    During the charge-discharge process, the battery capacity of the cathode materials decays as the number of the charge cycles increases. Two approaches are adopted in this work to improve the long-term cyclability of developed Li-rich cathode materials. First, PEDOT: PSS is used to modify the surface of spherical powders to enhance the conductivity and stability, especially the capacity retention under the high-rate conditions. The other method is to dip the coated electrode of lithium rich materials in Prussian Blue dye. The surface-modified electrode material shows the ability to inhibit the reaction with the electrolyte, and thus to improve the charge-discharge cycle life.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 XII 表目錄 XV 第一章 緒 論 1 1.1. 前言 1 1.2. 研究動機與目的 3 第二章 文獻回顧 4 2.1. 鋰離子二次電池 4 2.1.1. 陽極 6 2.1.2. 電解液 7 2.1.3. 陰極 10 2.2. 過量鋰陰極材料 13 2.2.1. 球狀二次粒子陰極材料Li[Li0.2Ni0.2Mn0.6]O2 13 2.2.2 陰極電極表面修飾 16 2.2.2.1 普魯士藍簡介 16 2.2.3. 陰極材料表面修飾 19 2.2.3.1 無機材料表面修飾 19 2.2.3.2. 有機高分子表面修飾 24 第 三章 實驗方法和儀器設備 26 3. 1. 儀器設備 26 3. 2. 實驗藥品 28 3. 3. 實驗步驟 29 3. 3. 1. Li[Li0.2Ni0.2Mn0.6]O2 的製備 29 3. 3. 2. Li1.2Ni0.13Mn0.54Co0.13O2的製備 31 3. 3. 3. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate表面修飾Li1.2Ni0.13Mn0.54Co0.13O2陰極材料 33 3. 3. 4. 普魯士藍表面沾濕修飾Li1.2Ni0.13Mn0.54Co0.13O2陰極電極材料 34 3. 4. 材料結構鑑定與分析 35 3. 4. 1. X光粉末繞射之分析 (X-ray diffraction, XRD) 35 3. 4. 2. 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 38 3. 4. 3. 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 39 3. 5. 電化學材料製備 40 3. 5. 1. 製備Li1.2Ni0.13Mn0.54Co0.13O2電極 40 3. 5. 2. 鈕扣型電池組裝 42 3. 6. 電化學鑑定與分析 44 3. 6. 1. 鈕扣型電池充放電測試分析 44 3. 6. 2. 交流阻抗電化學特性測試 45 3. 6. 3. 循環伏安分析 45 第四章 結果與討論 47 4.1. 球狀Li[Li0.2Ni0.2Mn0.6]O2二次粒子之合成 47 4.1.1. 共沉澱製程參數對球狀過量鋰前驅物之影響 47 4.1.2 Spray dryer製程對過量鋰合成之影響 50 4.1.2.1 球狀Li1.2Ni0.2Mn0.6O2二次粒子表面形貌分析 50 4.1.2.2. 球狀Li[Li0.2Ni0.2Mn0.2]O2二次粒子之結構分析 52 4.1.2.3. 球狀Li[Li0.2Ni0.2Mn0.6]O2二次粒子之充放電特性 54 4.2. 合成過量锂材料的結構和電化學特性分析 55 4.3. PEDOT:PSS表面修飾過量鋰粉末陰極材料 60 4.3.1. XRD晶格結構分析 61 4.3.2. 穿透式電子顯微鏡(TEM)表面型態分析 62 4.3.3. Raman 表面分析 63 4.3.4. 電化學性能之測試 64 4.3.4.1. 長圈數充放電測試 64 4.3.4.2. 變速率充放電測試 66 4.3.4.3. 交流阻抗分析 69 4.4. 普魯士藍( Prussian Blue)表面修飾過量鋰電極材料 70 4.4.1. Raman 表面分析 71 4.4.2. 電化學性能之測試 72 4.4.2.1. 長圈數充放電測試 72 4.4.2.2. 變速率充放電測試 74 4.4.2.3. 交流阻抗分析 76 第五章 結論 78 5.1球狀二次粒子之合成 78 5.2 PEDOT:PSS表面修飾Li1.2Ni0.13Mn0.54Co0.13O2陰極材料 79 5.3 普魯士藍表面修飾Li1.2Ni0.13Mn0.54Co0.13O2陰極材料 80 參考文獻 81

    1. Cheng, P.-h., Development of Additives for Lithium-ion Battery. 2013.
    2. 鄭朝陽, 聯合報 2009. 169期:D2.
    3. 呂學隆, 鋰電池電解液產業在兩岸的發展現況. 工業材料雜誌, 2011. 289.
    4. 楊模樺, 鋰電池材料技術發展. 工業材料雜誌 2006. 237:137.
    5. Goodenough JB, K.Y., Challenges for rechargeable Li batteries. . Chemistry of Materials, 2010. 22:587-603.
    6. Padhi AK, N.K., Goodenough JB, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society 1997. 144:1188-1194.
    7. Chung SY, B.J., Chiang YM, Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials, 2002. 1:123-128.
    8. Mi CH, C.G., Zhao XB, Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode. Materials Letters, 2005. 59:127-130.
    9. Mi CH, Z.X., Cao GS, Tu JP, In situ synthesis and properties of carbon-coated LiFePO4 as li-ion battery cathodes. Journal of the Electrochemical Society 2005. 152.
    10. Lu ZG, C.H., Lo MF, Chung CY, Pulsed Laser Deposition and Electrochemical Characterization of LiFePO4-Ag Composite Thin Films. Advanced Functional Materials, 2007. 17:3885-3896.
    11. Li C, Z.S., Cheng F, Ji W, Chen J, Porous LiFePO4/NiP Composite nanospheres as the cathode materials in rechargeable lithium-ion batteries. Nano Research 2008. 1:242-248.
    12. Croce F, D.E.A., Hassoun J, Deptula A, Olczac T, Scrosati B, A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid-State Letters, 2002. 5.
    13. Liu XM, H.Z., Oh S, Ma PC, Chan PCH, Vedam GK, Kang K, Kim JK, Sol-gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. . Journal of Power Sources 2010. 195:4290-4296.
    14. Mizushima K, J.P., Wiseman PJ, Goodenough JB, LixCoO2 (0≦x≦1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980. 15:783-789
    15. Fey GT-K, M.P., Lu C-Z, Cho Y-D, Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2. Electrochimica Acta, 2006. 51:4850-4858.
    16. 新リбюヰみ・産業技術総合開発機構 独. 2007, эХヨу二次電池構成材料開発ソ状態シ課題.
    17. Lee, D.K., et al., High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method. Journal of Power Sources, 2006. 162(2): p. 1346-1350.
    18. Monk, P.M., R.J. Mortimer, and D.R. Rosseinsky, Electrochromism: fundamentals and applications2008: John Wiley & Sons.
    19. Neff, V.D., Electrochemical oxidation and reduction of thin films of Prussian Blue. Journal of the Electrochemical Society, 1978. 125(6): p. 886-887.
    20. Itaya, K., T. Ataka, and S. Toshima, Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. Journal of the American Chemical Society, 1982. 104(18): p. 4767-4772.
    21. Mortimer, R.J. and D.R. Rosseinsky, Iron hexacyanoferrate films: spectroelectrochemical distinction and electrodeposition sequence of'soluble'(K+-containing) and'insoluble'(K+-free) Prussian Blue, and composition changes in polyelectrochromic switching. Journal of the Chemical Society, Dalton Transactions, 1984(9): p. 2059-2062.
    22. Keggin, J. and F. Miles, Structures and formulae of the Prussian blues and related compounds. Nature, 1936. 137(7): p. 577-578.
    23. Sehgal, J. and S. Ito, Brittleness of glass. Journal of non-crystalline solids, 1999. 253(1): p. 126-132.
    24. Sun, Y.-K., Cycling behaviour of LiCoO 2 cathode materials prepared by PAA-assisted sol–gel method for rechargeable lithium batteries. Journal of Power Sources, 1999. 83(1): p. 223-226.
    25. Choi, Y.-M. and S.-I. Pyun, Effects of intercalation-induced stress on lithium transport through porous LiCoO 2 electrode. Solid State Ionics, 1997. 99(3): p. 173-183.
    26. Cho, J., LiNi0. 74Co0. 26-x Mg x O2 Cathode Material for a Li-Ion Cell. Chemistry of Materials, 2000. 12(10): p. 3089-3094.
    27. Cho, J., et al., Zero‐strain intercalation cathode for rechargeable Li‐Ion cell. Angewandte Chemie, 2001. 113(18): p. 3471-3473.
    28. Cho, J., Y.J. Kim, and B. Park, LiCoO2 cathode material that does not show a phase transition from hexagonal to monoclinic phase. Journal of the Electrochemical Society, 2001. 148(10): p. A1110-A1115.
    29. Kim, Y.J., et al., Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings. Journal of the Electrochemical Society, 2003. 150(12): p. A1723-A1725.
    30. Wang, H., et al., Electron microscopic characterization of electrochemically cycled LiCoO 2 and Li (Al, Co) O 2 battery cathodes. Journal of Power Sources, 1999. 81: p. 594-598.
    31. Aurbach, D., et al., The study of surface phenomena related to electrochemical lithium intercalation into Li x MO y host materials (M= Ni, Mn). Journal of the Electrochemical Society, 2000. 147(4): p. 1322-1331.
    32. Cho, J., et al., High-performance ZrO2-coated LiNiO2 cathode material. Electrochemical and Solid-State Letters, 2001. 4(10): p. A159-A161.
    33. Chen, Z. and J. Dahn, Effect of a ZrO2 Coating on the Structure and Electrochemistry of Li x CoO2 When Cycled to 4.5 V. Electrochemical and Solid-State Letters, 2002. 5(10): p. A213-A216.
    34. Lepage, D., et al., A Soft Chemistry Approach to Coating of LiFePO4 with a Conducting Polymer. Angewandte Chemie International Edition, 2011. 50(30): p. 6884-6887.

    QR CODE