簡易檢索 / 詳目顯示

研究生: 洪珮嵐
Pei-Lan Hung
論文名稱: 雙酚A-乙氧基化物二甲基丙烯酸酯與甲基丙烯酸-三乙烯醇二甲基光固化樹脂添加氧化鋅奈米粒子對網路結構與性質的影響
Effects of Adding the Zinc Oxide Nanoparticles on Network Structure and Properties in Cured Resins of Ethoxylated Bisphenol-A Dimethacrylate and Triethylene Glycol Dimethacrylate
指導教授: 胡孝光
Shiaw-Guang Hu
口試委員: 楊正昌
張淑美
葉樹開
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 86
中文關鍵詞: 光固化樹脂氧化鋅奈米粒子
外文關鍵詞: cured resins, zinc oxide, nanoparticles
相關次數: 點閱:222下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以兩種比例 (60/40、80/20) 的進料ethoxylatedbisphenol-A dimethacrylate (BisEMA)及triethylene glycol dimethacrylate (TEGDMA),使用camphorquinone(CQ)與diphenylphosphine oxide(DPPO)為光起始劑,添加不同含量的zinc oxide,並以可見光聚合固化,討論不同BisEMA/TEGDMA進料比、zinc oxide添加量及照光時間對C=C雙鍵反應轉化率的影響,與物理和化學交聯密度如何影響到膨潤交聯產物的壓縮模數和水與高分子之交互作用參數,以及乾交聯產物的動態機械性質。
      藉由FTIR測單體的C=C雙鍵轉化率發現,來自兩種單體之aliphatics的雙鍵轉化率隨著BisEMA進料量增加和照光時間增長而上升,但隨著ZnO含量增加而下降。利用Avrami equation動力學模型,可計算出增長級數(n)與速率參數(k),n值隨著添加ZnO含量越高而 增加,但k值趨勢則相反。高分子的含水率隨BisEMA進料量和照光時間增加而下降,是因為BisEMA為疏水性的分子和照光時間愈長而提高樹脂的交聯度,而添加不同ZnO含量之高分子,其含水率會受ZnO本身照光後變親水性之因素和ZnO造成的活性反應位置因素影響。澎潤後的壓縮模數隨BisEMA進料量和照光時間增加而上升,有效交聯密度(νe)亦隨兩者增加而提升,且網路中物理交聯的密度(Ns)皆大於網路中化學交聯的密度(Nc),表示物理性的交聯影響膨潤交聯網路的黏彈性程度較大網路中物理交聯的密度,Ns 與Nc之比值約為定值(1.47~1.64)。另外,添加適量的ZnO有助於抵銷複合樹脂中的內應力。利用交聯密度與高分子吸水率可計算得出水和高分子間交互作用參數(χ),隨著νe增加,複合樹脂的網目愈小,χ值越大,平衡含水率越低。由動態機械分析發現儲存模數(Gꞌ)與玻璃轉移溫度(Tg)皆隨照光時間增長而上升,玻璃轉移溫度隨著交聯密度增加而遞增,表示適量添加氧化鋅奈米粒子有助於樹脂在高溫下具有較好的力學性質。
      實驗結果得知BisEMA/TEGDMA比例改變中添加氧化鋅奈米粒子或改變照光時間,均會影響高分子的網路結構、C=C雙鍵轉化率與物理及化學交聯密度,進而影響到膨潤交聯產物的力學性質和水與高分子之交互作用,及乾交聯產物的動態機械性質。


    Adhesives were prepared by using ethoxylated bisphenol-A dimethacrylate (BisEMA) and triethylene glycol dimethacrylate (TEGDMA) of different weight ratios, 60/40 and 80/20, in feed, with camphorquinone (CQ) and diphenylphosphine oxide (DPPO) as the photoinitiators. We added zinc oxide nanoparticles in various contents of feed and cured BisEMA and TEGDMA with visible light and the photoinitiator. We used the different photocuring times (2~6 mins) of visible light. We examined the effects of BisEMA/TEGDMA weight ratios in feed, contents of zinc oxide nanoparticles and photocuring times on conversion of reaction, network structure, thermodynamic and mechanical properties.

    According to FTIR analysis, the conversions of double bonds from aliphatics of two monomers increase as the contents of BisEMA increase or the photocuring time increases. But it decreases as the contents of zinc oxide nanoparticles increase. The order of propagation (n) and rate parameter (k) were calculated by the Avrami equation. As the contents of zinc oxide nanoparticles increase, the n values decreases but k values increases.

    The equilibrium water contents of polymers decrease as the contents of BisEMA increase or the photocuring time increases. This is because BisEMA is a hydrophobic molecule and the longer the photocuring times will cause the higher the crosslinking degree of the resin. In addition, adding different ZnO nanoparticles contents in polymers, the equilibrium water contents will be affected by the hydrophilicity of ZnO nanoparticles after ZnO nanoparticles were irradiated and the active reaction position factor caused by ZnO. Both of compressive modulus and crosslinking density increase with increasing the contents of BisEMA in feed and photocuring times. The density of physical entanglement(Ns)was greater than density of physical entanglement(Ns). It showed that physical cross-linking has more effect on the degree of viscoelasticity of the swelled network. And Ns / Nc ratios are almost constant (1.47~1.64). In addition, we observed the addition of an appropriate amount of ZnO helps to offset the internal stress in the composite resin. The interaction parameters of water and polymers in adhesives (χ) were calculated by crosslinking densities and equilibrium water contents. As crosslinking density increases, the mesh size of the composite resin was smaller. Then the χ values increases and the equilibrium water contents decrease.

    According to DMA analysis, as the photocuring time increases, the storage modulus (G ꞌ) and the glass transition temperature (Tg) will increase. The glass transition temperature was increased by increasing crosslink density. It indicated that the proper addition of zinc oxide nanoparticles helps the resin to have better mechanical properties at high temperatures.

    Experimental results showed that when we varied BisEMA/TEGDMA ratios in feed, contents of zinc oxide nanoparticles and photocuring times, that will influence the conversions of double bonds from aliphatics of two monomers, network structure of polymer and crosslink density. And there by affecting the compressive modulus and interactions between water and polymers in swollen resins, as well as affecting glass transition temperature, storage modulus and loss modulus of dry resins.

    一、前言 二、實驗方法 2.1 BisEMA/TEGDMA高分子的製備 2.2 含zinc oxide之複合材料的製備 2.3 測定反應後產物中殘留溶劑量達到平衡的時間 2.4 C=C雙鍵反應轉化率測試 2.5 平衡膨潤測定 2.6 壓縮變形率測試 2.7 動態機械性質分析 三、結果與討論 3.1 測定反應後產物中殘留溶劑量達到平衡的時間 3.2 傅立葉轉換紅外線光譜(FTIR) 3.2.1 傅立葉轉換紅外線光譜(FTIR)分析 3.2.2 BisEMA/TEGDMA比例改變中ZnO添加量與照光時間對C=C雙鍵轉化率之影響 3.3 C=C雙鍵轉化率與照光時間及光固化動力學模型 3.4 BisEMA/TEGDMA比例改變中ZnO添加量與照光時間對平衡含水率之影響 3.5 材料之壓縮測試 3.5.1 壓縮模數測定 3.5.2 含水率與交聯密度及Flory-Huggins交互作用參數 3.5.3膨潤交聯網絡結構對黏彈性質之影響 3.6  材料之動態機械性質分析 3.6.1 BisEMA/TEGDMA比例改變中ZnO添加量與照光時間對材料之動態機械性質之影響 3.6.2動態機械性質與交聯密度的關係 四、結論 五、參考文獻

    1. T. Sugaya, M. Kawanami, H. Noguchi, H. Kato, N. Masaka, Periodontal healing after bonding treatment of vertical root fracture, Dental Traumatology, 17, 174-179 (2001).

    2. D.W. Jones, Has Dental Amalgam Been Torpedoed and Sunk?, Journal of Dental Research, 87, 101-102 (2008).

    3. H. Shintani, T. Inoue, M. Yamaki, Analysis of camphorquinone in visible light-cured composite resins, Dental Materials, 1, 124-126 (1985).

    4. W. Geurtsen, Biocompatibility of Resin-Modified Filling Materials, Critical Reviews in Oral Biology & Medicine, 11, 333-355 (2000).

    5. K. Sunnegårdh-Grönberg, J.W.V. van Dijken, U. Funegård, A. Lindberg, M. Nilsson, Selection of dental materials and longevity of replaced restorations in Public Dental Health clinics in northern Sweden, Journal of Dentistry, 37, 673-678 (2009).

    6. M.A.S. Melo, S.F.F. Guedes, H.H.K. Xu, L.K.A. Rodrigues, Nanotechnology-based restorative materials for dental caries management, Trends in Biotechnology, 31, 459-467 (2013).

    7. A. Peutzfeldt, Resin composites in dentistry: the monomer systems, European Journal of Oral Sciences, 105, 97-116 (2007).

    8. C. Decker, Photoinitiated crosslinking polymerisation, Progress in Polymer Science, 21, 593-650 (1996).

    9. M.D. Purbrick, Photoinitiation, photopolymerization and photocuring, Polymer International, 40, 315-315 (1996).

    10 U.V. Läuppi, Radiation curing - an overview, International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 35, 30-35 (1990).

    11.S.E. Ullrich, Mechanisms underlying UV-induced immune suppression, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 571, 185-205 (2005).

    12.M. Ichihashi, M. Ueda, A. Budiyanto, T. Bito, M. Oka, M. Fukunaga, K. Tsuru, T. Horikawa, UV-induced skin damage, Toxicology, 189, 21-39 (2003).

    13.M. Buonocore, W. Wileman, F. Brudevold, A Report on a Resin Composition Capable of Bonding to Human Dentin Surfaces, Journal of Dental Research, 35, 846-851 (1956).

    14.H.H. Chandler, R.L. Bowen, G.C. Paffenbarger, Physical properties of a radiopaque denture base material, Journal of Biomedical Materials Research, 5, 335-357 (1971).

    15.L.C. Mendes, A.D. Tedesco, M.S. Miranda, M.R. Benzi, B.S. Chagas, Determination of degree of conversion as a function of depth of a photo-initiated dental restoration composite—III application to commercial Prodigy Condensable™, Polymer Testing, 24, 963-968 (2005).

    16.I. Sideridou, D.S. Achilias, C. Spyroudi, M. Karabela, Water sorption characteristics of light-cured dental resins and composites based on Bis-EMA/PCDMA, Biomaterials, 25, 367-376 (2004).

    17.D.R. Morgan, S. Kalachandra, H.K. Shobha, N. Gunduz, E.O. Stejskal, Analysis of a dimethacrylate copolymer (Bis-GMA and TEGDMA) network by DSC and 13C solution and solid-state NMR spectroscopy, Biomaterials, 21, 1897-1903 (2000).

    18.B. Enns John, K. Gillham John, Effect of the extent of cure on the modulus, glass transition, water absorptio, and density of an amine-cured epoxy, Journal of Applied Polymer Science, 28, 2831-2846 (1983).

    19.J. Park, J. Eslick, Q. Ye, A. Misra, P. Spencer, The influence of chemical structure on the properties in methacrylate-based dentin adhesives, Dental Materials, 27, 1086-1093 (2011).

    20.I. Vallo Claudia, Flexural strength distribution of a PMMA-based bone cement, Journal of Biomedical Materials Research, 63, 226-236 (2002).

    21.S.-H. Park, Comparison of degree of conversion for light-cured and additionally heat-cured composites, The Journal of Prosthetic Dentistry, 76, 613-618 (1996).

    22.A.D. Neves, J.A.C. Discacciati, R.L. Oréfice, M.I. Yoshida, Influence of the power density on the kinetics of photopolymerization and properties of dental composites, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 72B, 393-400 (2004).

    23.I. Sideridou, V. Tserki, G. Papanastasiou, Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins, Biomaterials, 24, 655-665 (2003).

    24.S.J. Paul, M. Leach, F.A. Rueggeberg, D.H. Pashley, Effect of water content on the physical properties of model dentine primer and bonding resins, Journal of Dentistry, 27, 209-214 (1999).

    25.M. Atai, M. Nekoomanesh, S.A. Hashemi, S. Amani, Physical and mechanical properties of an experimental dental composite based on a new monomer, Dental Materials, 20, 663-668 (2004).

    26.R.L. Bowen, Properties of a silica-reinforced polymer for dental restorations, The Journal of the American Dental Association, 66, 57-64 (1963).

    27.E. Asmussen, Composite restorative resins: Composition versus wall-to-wall polymerization contraction, Acta Odontologica Scandinavica, 33, 337-344 (1975).

    28.E. Ruyter, H. Øysæd, Composites for use in posterior teeth: Composition and conversion, Journal of Biomedical lvlaterials Research, Vol. 21, 11-23 (1987).

    29.J.L. Ferracane, Current Trends in Dental Composites, Critical Reviews in Oral Biology & Medicine, 6, 302-318 (1995).

    30.N. Moszner, U. Salz, New developments of polymeric dental composites, Progress in Polymer Science, 26, 535-576 (2001).

    31.K. Anseth, S.M. Newman, C.N. Bowman, Polymeric dental composites: Properties and reaction behavior of multimethacrylate dental restorations,first edition,Springer,Chapter 6, 177-217(2006).

    32.J. Tinschert, D. Zwez, R. Marx, K.J. Anusavice, Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics, Journal of Dentistry, 28, 529-535 (2000).

    33.J. Luo, R. Seghi, J. Lannutti, Effect of silane coupling agents on the wear resistance of polymer-nanoporous silica gel dental composites, Materials Science and Engineering: C, 5, 15-22 (1997).

    34.L. Musanje, J.L. Ferracane, Effects of resin formulation and nanofiller surface treatment on the properties of experimental hybrid resin composite, Biomaterials, 25, 4065-4071 (2004).

    35.K.S. Wilson, K. Zhang, J.M. Antonucci, Systematic variation of interfacial phase reactivity in dental nanocomposites, Biomaterials, 26, 5095-5103 (2005).

    36.R. Osorio, I. Cabello, A.L. Medina-Castillo, E. Osorio, M. Toledano, Zinc-modified nanopolymers improve the quality of resin–dentin bonded interfaces, Clinical Oral Investigations, 20, 2411-2420 (2016).

    37.I. Mohamed Hamouda, Current perspectives of nanoparticles in medical and dental biomaterials, Journal of Biomedical Research, 26, 143-151 (2012).

    38.H.-C. Huang, T.-E. Hsieh, Preparation and characterizations of highly transparent UV-curable ZnO-acrylic nanocomposites, Ceramics International, 36, 1245-1251 (2010).

    39.S. Tavassoli Hojati, H. Alaghemand, F. Hamze, F. Ahmadian Babaki, R. Rajab-Nia, M.B. Rezvani, M. Kaviani, M. Atai, Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles, Dental Materials, 29, 495-505 (2013).

    40.D.C. Barcellos, B.M. Fonseca, C.R. Pucci, B.d.N. Cavalcanti, E.D.S. Persici, S.E.d.P. Gonçalves, Zn-doped etch-and-rinse model dentin adhesives: Dentin bond integrity, biocompatibility, and properties, Dental Materials, 32, 940-950 (2016).

    41.A. Becheri, M. Dürr, P. Lo Nostro, P. Baglioni, Synthesis and characterization of zinc oxide nanoparticles: application to textiles as UV-absorbers, Journal of Nanoparticle Research, 10, 679-689 (2008).

    42.S. Ammar, K. Ramesh, B. Vengadaesvaran, S. Ramesh, A.K. Arof, Amelioration of anticorrosion and hydrophobic properties of epoxy/PDMS composite coatings containing nano ZnO particles, Progress in Organic Coatings, 92, 54-65 (2016).

    43.H. Liu, L. Feng, J. Zhai, L. Jiang, D. Zhu, Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film between Superhydrophobicity and Superhydrophilicity, Langmuir, 20, 5659-5661 (2004).

    44.R. Frankenberger, F.R. Tay, Self-etch vs etch-and-rinse adhesives: effect of thermo-mechanical fatigue loading on marginal quality of bonded resin composite restorations, Dental Materials, 21, 397-412 (2005).

    45.B. Meerbeek, K. Van Landuyt, J. De Munck, M. Hashimoto, M. Peumans, P. Lambrechts, Y. Yoshida, S. Inoue, K. Suzuki, Technique-Sensitivity of Contemporary Adhesives,Chapter, 1-13(2005).

    46.G. Lovell Lale, A. Berchtold Kathryn, E. Elliott Jeannine, H. Lu, N. Bowman Christopher, Understanding the kinetics and network formation of dimethacrylate dental resins, Polymers for Advanced Technologies, 12, 335-345 (2001).

    47.J.E. Elliott, C.N. Bowman, Kinetics of Primary Cyclization Reactions in Cross-Linked Polymers:  An Analytical and Numerical Approach to Heterogeneity in Network Formation, Macromolecules, 32, 8621-8628 (1999).

    48.J.E. Elliott, J. Nie, C.N. Bowman, The effect of primary cyclization on free radical polymerization kinetics: experimental characterization, Polymer, 44, 327-332 (2003).

    49.J.E. Elliott, L.G. Lovell, C.N. Bowman, Primary cyclization in the polymerization of bis-GMA and TEGDMA: a modeling approach to understanding the cure of dental resins, Dental Materials, 17, 221-229 (2001).

    50.R.H. Halvorson, R.L. Erickson, C.L. Davidson, The effect of filler and silane content on conversion of resin-based composite, Dental Materials, 19, 327-333 (2003).

    51.Y. Zhang, J. Xu, Effect of immersion in various media on the sorption, solubility, elution of unreacted monomers, and flexural properties of two model dental composite compositions, Journal of Materials Science: Materials in Medicine, 19, 2477-2483 (2008).

    52.U. Örtengren, H. Wellendorf, S. Karlsson, I.E. Ruyter, Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment, Journal of Oral Rehabilitation, 28, 1106-1115 (2001).

    53.P.L. Chandran, V.H. Barocas, Affine Versus Non-Affine Fibril Kinematics in Collagen Networks: Theoretical Studies of Network Behavior, Journal of Biomechanical Engineering, 128, 259-270 (2005).

    54.K. Ulbrich, K. Dušek, M. Ilavský, J. Kopeček, Preparation and properties of poly-(N-butylmethacrylamide) networks, European Polymer Journal, 14, 45-49 (1978).

    55.K. Ulbrich, M. Ilavský, K. Dušek, J. Kopeček, Preparation and properties of poly(N-ethylmethacrylamide) networks, European Polymer Journal, 13, 579-585 (1977).

    56.P.J. Flory, Principles of Polymer Chemistry, Cornell University Press(1953).

    57.L. Brannon-Peppas, N.A. Peppas, Structural analysis of charged polymeric networks, Polymer Bulletin, 20, 285-289 (1988).

    58.S.B. Allin, Introduction to Physical Polymer Science, 3rd Edition (Sperling, L. H.), Journal of Chemical Education, 78, 1469 (2001).

    59.R.C. Ball, M. Doi, S.F. Edwards, M. Warner, Elasticity of entangled networks, Polymer, 22, 1010-1018 (1981).

    60.R.G. Matthews, R.A. Duckett, I.M. Ward, D.P. Jones, The biaxial drawing behaviour of poly(ethylene terephthalate), Polymer, 38, 4795-4802 (1997).

    61.M. Rubinstein, S. Panyukov, Elasticity of Polymer Networks, Macromolecules, 35, 6670-6686 (2002).

    62.P. Thirion, T. Weil, Assessment of the sliding link model of chain entanglement in polymer networks, Polymer, 25, 609-614 (1984).

    63.M.G. Brereton, P.G. Klein, Analysis of the rubber elasticity of polyethylene networks based on the slip link model of S. F. Edwards et al, Polymer, 29, 970-974 (1988).

    64.A. Shefer, M. Gottlieb, Effect of crosslinks on the glass transition temperature of end-linked elastomers, Macromolecules, 25, 4036-4042 (1992).

    65.G. Escamard, C.D Rosa, F. Auriemma, Predicting the glass transition temperature as function of crosslink density and polymer interactions in rubber compounds, AIP Conference Proceedings 1736, 020176 (2016).

    QR CODE