簡易檢索 / 詳目顯示

研究生: 李昱萱
Yu-Syuan Li
論文名稱: 添加塑化劑製備彈性3D列印支架並探討無毒塑化劑之替代及應用
Preparation of Flexible 3D Printed Scaffold by Adding Plasticizer and Investigation of Non-toxic Plasticizer Substitution and Application
指導教授: 何明樺
Ming-Hua Ho
口試委員: 陳崇賢
Chorng-Shyan Chern
蕭偉文
Wei-Wen Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 173
中文關鍵詞: 3D列印支架塑化劑骨母細胞動態培養
外文關鍵詞: 3D printing, Scaffold, plasticizer, Osteoblast, Dynamic culture
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在人體內真實的細胞與組織環境是三維且動態的,然而,傳統細胞培養多為二維靜態培養,與人體內部真實情況存在差異,無法準確了解細胞在體內的行為。3D列印能有效率並精準地製備出理想的三維結構,但動態系統的支架需要高彈性,而常用於3D列印的光固化樹脂固化成型後的材料硬度較高,限制其在骨組織工程的應用。因此,本研究使用各種塑化劑添加到PCL-HEMA光固化樹脂與擠製成型墨水中,同時以TA (Triacetin,三乙酸甘油酯)、MESA (Methyl salicylate,水楊酸甲酯)、DMSU (Dimethyl succinate,琥珀酸二甲酯)和DBM (Dibutyl maleate,馬來酸二丁酯)作為生物型塑化劑,並以工業上最常使用的塑化劑,鄰苯二甲酸二丁酯 (Dibutyl phthalate,DBP)作為對照組,開發具有高彈性的支架,並提供週期性循環壓縮模擬人體日常運動行為,觀察細胞在三維結構上受動態刺激時的表現。
    實驗結果顯示,添加塑化劑可以降低樹脂的熱性質,此外,塑化劑的添加降低了樹脂的黏度,提高了其流動性,也導致樹脂的壓縮強度下降,並且在老化實驗中了解樹脂顏色變化和材料的穩定性,證明塑化劑的加入成功地提高光固化樹脂的柔韌性,整體以添加DMSU的增塑效果最為顯著。在擠製成型系統方面,加入塑化劑能有效提升PCL (Polycaprolactone,聚己內酯)/HA (Hydroxyapatite,羥基磷灰石)複合樹脂彈性,使壓縮率最高提升至70%。
    接著藉由多孔結構和動態系統的導入探討對骨母細胞生長造成的影響。MTT結果顯示,含有塑化劑的樹脂與原始樹脂一樣具有很高的生物相容性,當生物支架受到循環壓縮時,產生的刺激可增強骨母細胞之增殖,在多孔結構時表現更明顯。ALP結果也發現添加塑化劑之樹脂使骨分化時程被提前,而相較於靜態培養,在動態培養之多孔結構也觀察到較良好骨細胞分化行為。綜合以上結果,顯示本材料具備應用於骨植入物填充材之潛力,且具有加速傷口骨細胞修復及組織再生等效果。


    The actual cell and tissue environment within the human body is three-dimensional and dynamic. However, conventional cell culture methods primarily utilize a two-dimensional and static approach, which differs from the natural human body environment. Consequently, cell behaviors observed in vitro are not biomimetic. In order to simulate in vivo morphologies, 3D printing offers an efficient and accurate means of producing ideal three-dimensional structures. Nonetheless, the commonly used cured resin in 3D printing is typically rigid and tough, limiting its application in dynamic cultures. Thus, this study aimed to enhance the flexibility of 3D-printed products by incorporating various plasticizers, such as triacetin (TA), methyl salicylate (MESA), dimethyl succinate (DMSU), and dibutyl maleate (DBM), into photo-curable resins and extrusion bio-inks. Additionally, dibutyl phthalate (DBP), currently the most widely used plasticizer in 3D printing, was also employed.
    The experimental results demonstrated that the incorporation of plasticizers resulted in a decrease in the glass transition temperature (Tg) and decomposition temperature (Td) of the photo-cured resins, thereby enhancing the softness of the 3D-printed products. The addition of plasticizers also led to a reduction in resin viscosity and accelerated aging effects, indicating that the plasticizers promote the mobility of molecular chains within the photo-resin. A comparison among the different plasticizers revealed that DMSU exhibited the most effective plasticizing properties in this study. One possible reason for this is the relatively small molecular weight of DMSU, which enhances its diffusion ability. Additionally, the high affinity between DMSU and oligomers reduces the intermolecular forces among the oligomers to a significant extent.
    In the extrusion system, the incorporation of plasticizers enhanced the flexibility of the PCL/HA composite and led to a 70% increase in compressibility. Among the plasticizers investigated in this study, DMSU exhibited the highest efficiency due to its ability to improve the mechanical properties of the materials. Notably, DMSU and DBP performed similarly in this regard, highlighting the potential of DMSU as a non-toxic plasticizer.
    The MTT test results indicated that the resin containing plasticizers exhibited comparable biocompatibility to the original resin. The integration of 3D porous structures, plasticizer addition, and dynamic stimulation further enhanced the proliferation of osteoblasts. Notably, the combination of 3D structures and plasticizer addition proved to be more effective in promoting cell viability through pulse compression. Among the various scaffolds, the cells cultured on 3D scaffolds containing DMSU demonstrated the highest viability, potentially due to the improved flexibility of the scaffold. The ALP results demonstrated that the integration of 3D structures and plasticizer addition facilitated early osteogenic activity. In particular, the presence of DMSU as the plasticizing agent led to earlier expression of ALP, highlighting the osteoinductive effects of the flexible 3D scaffolds developed in this research.

    目錄 摘要 I 致謝 IV 目錄 V 圖目錄 IX 方程式目錄 XVI 專有名詞及縮寫 XVII 第一章 緒論 1 第二章 文獻回顧 3 2.1 積層製造技術介紹 3 2.1.1 積層製造技術分類 3 2.1.2 光固化樹脂主要成分及反應機制 6 2.1.3 影響光固化樹脂在積層製造表現的因素 7 2.1.4 積層製造用於生醫領域 8 2.2 骨支架介紹 9 2.2.1 骨支架材料 9 2.2.2 3D列印支架的應用 11 2.2.3 多孔結構對機械強度之影響 13 2.2.4 彈性支架性對骨組織再生之影響 15 2.3 塑化劑介紹 17 2.3.1 塑化劑作用原理 17 2.3.2 塑化劑分類及應用 18 2.3.3 塑化劑之添加對細胞或組織之影響 21 2.3.4 塑化劑在3D列印中的應用 23 第三章 實驗材料與方法 25 3.1 實驗藥品 25 3.2 實驗儀器 27 3.3 生物支架製備 29 3.3.1 製備含有塑化劑之光固化樹脂 29 3.3.2 光固化樹脂列印 29 3.3.3 製備含有塑化劑之生物墨水 30 3.4 材料性質檢測 31 3.4.1 熱重分析(TGA) 31 3.4.2 熱示差掃描分析(DSC) 31 3.4.3 黏度測試 31 3.4.4 壓縮測試 32 3.4.5 多功能固體密度量測 32 3.4.6 傅立葉轉換紅外線光譜儀(FTIR)分析 33 3.4.7 材料穩定性分析 33 3.4.8 樹脂質量流失測試 34 3.5 體外細胞測試 35 3.5.1 光固化材料試片製作 35 3.5.2 生物相容性檢測方式與操作 35 3.5.3 培養基配置 35 3.5.4 細胞來源 36 3.5.5 細胞培養 37 3.5.6 細胞冷凍保存 37 3.5.7 細胞解凍及培養 38 3.5.8 細胞計數 38 3.5.9 體外細胞培養 40 3.5.10 粒線體活性測試 40 3.5.11 鹼性磷酸酶測試 42 3.5.12 蛋白質濃度測定 43 3.6 動態培養系統建立 45 3.6.1 機械裝置壓縮之培養系統 45 第四章 結果與討論 46 4.1 添加不同塑化劑之物理性質分析 46 4.1.1 熱性質分析 46 4.1.2 流變性質分析 51 4.1.3 壓縮強度分析 53 4.1.4 材料穩定度分析 55 4.1.5 收縮率分析 61 4.2 不同後固化時間對添加增塑劑樹脂關係分析 64 4.2.1 轉化率分析 64 4.2.2 壓縮強度分析 68 4.3 支架設計及機械性質調控 70 4.3.1 多孔結構支架機械性質差異 70 4.3.2 往復壓縮支架測定回復性 75 4.4 含塑化劑樹脂之生物性質分析 80 4.4.1 材料細胞毒性分析 80 4.4.2 細胞型態分析 87 4.5 靜態與動態系統細胞活性分析之差異 90 4.5.1 靜態培養細胞活性分析 90 4.5.2 動態培養之細胞活性分析 92 4.6 靜態與動態系統骨母細胞分化分析 98 4.6.1 靜態培養細胞分化分析 98 4.6.2 動態培養細胞分化分析 103 4.7 添加塑化劑之生物墨水機械性質分析 112 4.7.1 壓縮強度分析 112 第五章 結論 117 第六章 未來工作 118 參考文獻 119 附錄 141

    1. Bogue, R., 3D printing: The dawn of a new era in manufacturing? Assembly Automation, 2013. 33: p. 307-311.
    2. Attaran, M., The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Business Horizons, 2017. 60: p. 677-688.
    3. Lee, J.Y., J. An, and C.K. Chua, Fundamentals and applications of 3D printing for novel materials. Applied Materials Today, 2017. 7: p. 120-133.
    4. Bagheri, A. and J. Jin, Photopolymerization in 3D Printing. ACS Applied Polymer Materials, 2019. 1: p. 593-611.
    5. Sachdeva, I., S. Ramesh, U. Chadha, H. Punugoti, and S.K. Selvaraj, Computational AI models in VAT photopolymerization: a review, current trends, open issues, and future opportunities. Neural Computing & Applications, 2022. 34: p. 17207-17229.
    6. Chaunier, L., S. Guessasma, S. Belhabib, G. Della Valle, D. Lourdin, and E. Leroy, Material extrusion of plant biopolymers: Opportunities & challenges for 3D printing. Additive Manufacturing, 2018. 21: p. 220-233.
    7. Nguyen, L.H., M. Straub, and M. Gu, Acrylate-Based Photopolymer for Two-Photon Microfabrication and Photonic Applications. Advanced Functional Materials, 2005. 15: p. 209-216.
    8. Gleeson, M.R., J.V. Kelly, C.E. Close, F.T. O'Neill, and J.T. Sheridan, Effects of absorption and inhibition during grating formation in photopolymer materials. Journal of the Optical Society of America B, 2006. 23: p. 2079-2088.
    9. Gleeson, M.R., S. Liu, S. O’Duill, and J.T. Sheridan, Examination of the photoinitiation processes in photopolymer materials. Journal of Applied Physics, 2008. 104: p. 64917-64917.
    10. Le Fer, G., Y. Luo, and M.L. Becker, Poly (propylene fumarate) stars, using architecture to reduce the viscosity of 3D printable resins. Polymer Chemistry, 2019. 10: p. 4655-4664.
    11. Nagem Filho, H., H.D. Nagem, P.A.S. Francisconi, E.B. Franco, R.F.L. Mondelli, and K.Q. Coutinho, Volumetric polymerization shrinkage of contemporary composite resins. Journal of Applied Oral Science, 2007. 15: p. 448-452.
    12. Jiang, B., S. He, Y.D. Huang, and H.T. Pan, Investigation of the Kinetics of Curing Reaction for the Resin Matrix Polymer Composite Based on Near-Infrared Spectroscopy. Applied Spectroscopy Reviews, 2015. 50: p. 627-640.
    13. Jančovičová, V., M. Mikula, B. Havlínová, and Z. Jakubíková, Influence of UV-curing conditions on polymerization kinetics and gloss of urethane acrylate coatings. Progress in Organic Coatings, 2013. 76: p. 432-438.
    14. Butscher, A., M. Bohner, N. Doebelin, S. Hofmann, and R. Müller, New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Acta biomaterialia, 2013. 9: p. 9149-9158.
    15. Derby, B., Printing and prototyping of tissues and scaffolds. science, 2012. 338: p. 921-926.
    16. Hossain, N., M.A. Chowdhury, M.B.A. Shuvho, M.A. Kashem, and M. Kchaou, 3D-Printed Objects for Multipurpose Applications. Journal of Materials Engineering and Performance, 2021. 30: p. 4756-4767.
    17. Xu, T., W. Zhao, J.-M. Zhu, M.Z. Albanna, J.J. Yoo, and A. Atala, Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials, 2013. 34: p. 130-139.
    18. Jiang, Y. and Q. Wang, Highly-stretchable 3D-architected mechanical metamaterials. Scientific reports, 2016. 6: p. 34147-34158.
    19. Quan, H., T. Zhang, H. Xu, S. Luo, J. Nie, and X. Zhu, Photo-curing 3D printing technique and its challenges. Bioactive Materials, 2020. 5: p. 110-115.
    20. Lin, Y.M., H. Chen, C.H. Lin, P.J. Huang, and S.Y. Lee, Development of polycaprolactone/hydroxyapatite composite resin for 405 nm digital light projection 3D printing. Rapid Prototyping Journal, 2020. 26: p. 951-958.
    21. Peng, C.X., J.X. Zheng, D.R. Chen, X.Q. Zhang, L.D. Deng, Z.Y. Chen, and L.P. Wu, Response of hPDLSCs on 3D printed PCL/PLGA composite scaffolds in vitro. Molecular Medicine Reports, 2018. 18: p. 1335-1344.
    22. Salgado, A.J., O.P. Coutinho, and R.L. Reis, Bone tissue engineering: state of the art and future trends. Macromolecular bioscience, 2004. 4: p. 743-765.
    23. Hollister, S.J. and C.Y. Lin, Computational design of tissue engineering scaffolds. Computer Methods in Applied Mechanics and Engineering, 2007. 196: p. 2991-2998.
    24. Cao, X.-f.S., Peng-jie Qiao, Yong-jie Zhen, Ping, 3D printing of bone tissue engineering scaffolds. Chinese Journal of Tissue Engineering Research, 2015. 19: p. 4076-4081.
    25. Maeng, J., M.S. Kim, D.K. Yoon, B.J. Jin, K.D. Lee, and T.S. Suh, Supporting ability of customized metal scaffold to protect biodegradable scaffold for effective bone reconstruction. Journal of the Korean Physical Society, 2021. 78: p. 729-734.
    26. Wu, T.Y., Suihuai Chen, Dengkai Wang, Yanen, Bionic Design, Materials and Performance of Bone Tissue Scaffolds. Materials, 2017. 10: p. 1187-1201.
    27. Zhang, T.Z., Shaonan Gao, Xiaohao Yang, Zhiyong Sun, Leran Zhang, Dezheng, A multi-scale method for modeling degradation of bioresorbable polyesters. Acta Biomaterialia, 2017. 50: p. 462-475.
    28. Stevens, M.M., Biomaterials for bone tissue engineering. Materials Today, 2008. 11: p. 18-25.
    29. Bakht Khosh Hagh, H. and F. Farshi Azhar, Reinforcing materials for polymeric tissue engineering scaffolds: A review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2019. 107: p. 1560-1575.
    30. Oktay, B.A.Ö., Esma Sahin, Ali Gunduz, Oguzhan Ustundag, Cem Bulent, Production and Characterization of PLA/HA/GO Nanocomposite Scaffold. ChemistrySelect, 2022. 7: p. e202200697-e202200697.
    31. Chen, Q. and Y. Wang, The application of three-dimensional cell culture in clinical medicine. Biotechnology Letters, 2020. 42: p. 2071-2082.
    32. Rowlands, A.S., S.A. Lim, D. Martin, and J.J. Cooper-White, Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials, 2007. 28: p. 2109-2121.
    33. Misra, S.K., T.I. Ansari, S.P. Valappil, D. Mohn, S.E. Philip, W.J. Stark, I. Roy, J.C. Knowles, V. Salih, and A.R. Boccaccini, Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials, 2010. 31: p. 2806-2815.
    34. Chen, W., H. Zhou, M. Tang, M.D. Weir, C. Bao, and H.H.K. Xu, Gas-Foaming Calcium Phosphate Cement Scaffold Encapsulating Human Umbilical Cord Stem Cells. Tissue Engineering Part A, 2011. 18: p. 816-827.
    35. Caliari, S.R., M.A. Ramirez, and B.A.C. Harley, The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering. Biomaterials, 2011. 32: p. 8990-8998.
    36. Xu, N., X. Ye, D. Wei, J. Zhong, Y. Chen, G. Xu, and D. He, 3D Artificial Bones for Bone Repair Prepared by Computed Tomography-Guided Fused Deposition Modeling for Bone Repair. ACS Applied Materials & Interfaces, 2014. 6: p. 14952-14963.
    37. Han, X., R. Bibb, and R. Harris, Engineering design of artificial vascular junctions for 3D printing. Biofabrication, 2016. 8: p. 025018-025018.
    38. Barthes, J., P. Lagarrigue, V. Riabov, G. Lutzweiler, J. Kirsch, C. Muller, E.J. Courtial, C. Marquette, F. Projetti, J. Kzhyskowska, P. Lavalle, N.E. Vrana, and A. Dupret-Bories, Biofunctionalization of 3D-printed silicone implants with immunomodulatory hydrogels for controlling the innate immune response: An in vivo model of tracheal defect repair. Biomaterials, 2021. 268: p. 120549-120562.
    39. Kumar, A., S. Mandal, S. Barui, R. Vasireddi, U. Gbureck, M. Gelinsky, and B. Basu, Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applications: Processing related challenges and property assessment. Materials Science and Engineering: R: Reports, 2016. 103: p. 1-39.
    40. Bose, S., M. Roy, and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 2012. 30: p. 546-554.
    41. Gauvin, R., Y. C. Chen, J.W. Lee, P. Soman, P. Zorlutuna, J.W. Nichol, H. Bae, S. Chen, and A. Khademhosseini, Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials, 2012. 33: p. 3824-3834.
    42. Wu, S., X. Liu, K.W. Yeung, C. Liu, and X. Yang, Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering: R: Reports, 2014. 80: p. 1-36.
    43. Ginebra, M.P., 10 - Cements as bone repair materials, in Bone Repair Biomaterials, J.A. Planell, S.M. Best, D. Lacroix, and A. Merolli, Editors. 2009, Woodhead Publishing. p. 271-308.
    44. Chen, X., H. Fan, X. Deng, L. Wu, T. Yi, L. Gu, C. Zhou, Y. Fan, and X. Zhang Scaffold Structural Microenvironmental Cues to Guide Tissue Regeneration in Bone Tissue Applications. Nanomaterials, 2018. 8: p. 960-975.
    45. Valainis, D., P. Dondl, P. Foehr, R. Burgkart, S. Kalkhof, G.N. Duda, M. van Griensven, and P.S.P. Poh, Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties. Biomedical Materials, 2019. 14: p. 65002-65008.
    46. Guo, W., Y. Yang, C. Liu, W. Bu, F. Guo, J. Li, E. Wang, Z. Peng, H. Mai, H. You, and Y. Long, 3D printed TPMS structural PLA/GO scaffold: Process parameter optimization, porous structure, mechanical and biological properties. Journal of the Mechanical Behavior of Biomedical Materials, 2023. 142: p. 105848-105861.
    47. Cardiff, P., Development of the Finite Volume Method for Hip Joint Stress Analysis. 2012, School of Mechanical & Materials Engineering College of Engineering & Architecture University College Dublin. p. 1-241.
    48. Hashmi, B., T. Mammoto, J. Weaver, T. Ferrante, A. Jiang, E. Jiang, J. Feliz, and D.E. Ingber, Mechanical induction of dentin-like differentiation by adult mouse bone marrow stromal cells using compressive scaffolds. Stem Cell Research, 2017. 24: p. 55-60.
    49. Wu, M.-H., H.-Y. Wang, C.-L. Tai, Y.-H. Chang, Y.-M. Chen, S.-B. Huang, T.-K. Chiu, T.-C. Yang, and S.-S. Wang, Development of perfusion-based microbioreactor platform capable of providing tunable dynamic compressive loading to 3-D cell culture construct: Demonstration study of the effect of compressive stimulations on articular chondrocyte functions. Sensors and Actuators B: Chemical, 2013. 176: p. 86-96.
    50. Cassino, T.R., R. Anderson, B.J. Love, W.R. Huckle, D.K. Seamans, and K. Forsten-Williams, Design and application of an oscillatory compression device for cell constructs. Biotechnology and Bioengineering, 2007. 98: p. 211-220.
    51. Noroozi, R., M.A. Shamekhi, R. Mahmoudi, A. Zolfagharian, F. Asgari, A. Mousavizadeh, M. Bodaghi, A. Hadi, and N. Haghighipour, In vitro static and dynamic cell culture study of novel bone scaffolds based on 3D-printed PLA and cell-laden alginate hydrogel. Biomedical Materials, 2022. 17: p. 045024-045042.
    52. Gomes, M.E., V.I. Sikavitsas, E. Behravesh, R.L. Reis, and A.G. Mikos, Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. Journal of Biomedical Materials Research Part A, 2003. 67: p. 87-95.
    53. Tang, Z.Q., L. Zhao, Y.X. Liu, and Y.G. Zhang, Molecular design of environmental friendly green plasticizers. Chinese Science Bulletin-Chinese, 2022. 67: p. 2835-2847.
    54. Rahman, M. and C.S. Brazel, The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Progress in Polymer Science, 2004. 29(12): p. 1223-1248.
    55. Bocque, M., C. Voirin, V. Lapinte, S. Caillol, and J.J. Robin, Petro-Based and Bio-Based Plasticizers: Chemical Structures to Plasticizing Properties. Journal of Polymer Science Part A-Polymer Chemistry, 2016. 54: p. 11-33.
    56. Daniels, P.H., A brief overview of theories of PVC plasticization and methods used to evaluate PVC-plasticizer interaction. Journal of Vinyl and Additive Technology, 2009. 15: p. 219-223.
    57. Muobom, S.S., A. Umar, Y. Soongseok, and A.-P. Brolin, A review on plasticizers and eco-friendly bioplasticizers: Biomass sources and market. Int. J. Eng. Res, 2020. 9: p. 1138-1144.
    58. Vieira, M.G.A., M.A. da Silva, L.O. dos Santos, and M.M. Beppu, Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 2011. 47: p. 254-263.
    59. Sothornvit, R. and J.M. Krochta, Plasticizers in edible films and coatings, in Innovations in Food Packaging. 2005. p. 403-433.
    60. Siepmann, J., O. Paeratakul, and R. Bodmeier, Modeling plasticizer uptake in aqueous polymer dispersions. International Journal of Pharmaceutics, 1998. 165: p. 191-200.
    61. Felton, L.A., Aqueous polymeric coatings for pharmaceutical dosage forms. 2016. p.1-488.
    62. Erythropel, H.C., M. Maric, J.A. Nicell, R.L. Leask, and V. Yargeau, Leaching of the plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure. Applied Microbiology and Biotechnology, 2014. 98: p. 9967-9981.
    63. Stringer, R., I. Labunska, D. Santillo, P. Johnston, J. Siddorn, and A. Stephenson, Concentrations of phthalate esters and identification of other additives in PVC children's toys. Environmental Science and Pollution Research, 2000. 7: p. 27-36.
    64. Tickner, J.A., T. Schettler, T. Guidotti, M. McCally, and M. Rossi, Health risks posed by use of Di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: A critical review. American Journal of Industrial Medicine, 2001. 39: p. 100-111.
    65. Maskova, A.R., G.U. Yarmukhametova, D.F. Kinzyabulatova, and L.Z. Rolnik, Development of environmentally friendly PVC compositions. Nanotechnologies in Construction-A Scientific Internet-Journal, 2022. 14: p. 373-380.
    66. Greco, A. and A. Maffezzoli, Cardanol derivatives as innovative bio-plasticizers for poly-(lactic acid). Polymer Degradation and Stability, 2016. 132: p. 213-219.
    67. Halloran, M.W., J.A. Nicell, R.L. Leask, and M. Marić, Bio-based glycerol plasticizers for flexible poly(vinyl chloride) blends. Journal of Applied Polymer Science, 2022. 139: p. e52778-e52789.
    68. Jamarani, R., H.C. Erythropel, J.A. Nicell, R.L. Leask, and M. Marić, How Green is Your Plasticizer? Polymers, 2018. 10: p. 834-851.
    69. Gimeno, P., S. Thomas, C. Bousquet, A.-F. Maggio, C. Civade, C. Brenier, and P.-A. Bonnet, Identification and quantification of 14 phthalates and 5 non-phthalate plasticizers in PVC medical devices by GC–MS. Journal of Chromatography B, 2014. 949-950: p. 99-108.
    70. Hosney, H., E.G. Al-Sakkari, A. Mustafa, I. Ashour, I. Mustafa, and A. El-Shibiny, A cleaner enzymatic approach for producing non-phthalate plasticiser to replace toxic-based phthalates. Clean Technologies and Environmental Policy, 2020. 22: p. 73-89.
    71. Darabian, B., H. Bagheri, and S. Mohammadi, Improvement in mechanical properties and biodegradability of PLA using poly(ethylene glycol) and triacetin for antibacterial wound dressing applications. Progress in Biomaterials, 2020. 9: p. 45-64.
    72. Ibrahim, N.A., W. Yunus, M. Othman, K. Abdan, and K.A. Hadithon, Poly(Lactic Acid) (PLA)-reinforced Kenaf Bast Fiber Composites: The Effect of Triacetin. Journal of Reinforced Plastics and Composites, 2010. 29: p. 1099-1111.
    73. Chan, T.Y.K., Review : Potential dangers from topical preparations containing methyl salicylate. Human & Experimental Toxicology, 1996. 15: p. 747-750.
    74. Snejdrova, E., M. Dittrich, and M. Drastik, Plasticized branched aliphatic oligoesters as potential mucoadhesive drug carriers. International Journal of Pharmaceutics, 2013. 458: p. 282-286.
    75. Wan, X., D. Ren, Y. Liu, J. Fu, Z. Song, F. Jin, and Z. Huo, Facile Synthesis of Dimethyl Succinate via Esterification of Succinic Anhydride over ZnO in Methanol. ACS Sustainable Chemistry & Engineering, 2018. 6: p. 2969-2975.
    76. Wang, S.S. and Q.S. Xing, Study on properties and biocompatibility of poly (butylene succinate) and sodium alginate biodegradable composites for biomedical applications. Materials Research Express, 2022. 9: p. 85403-85417.
    77. Mulay, A. and V.K. Rathod, Esterification of maleic acid and butanol using cationic exchange resin as catalyst. Journal of Chemical Sciences, 2017. 129: p. 1713-1720.
    78. Erythropel, H.C., M. Maric, and D.G. Cooper, Designing green plasticizers: Influence of molecular geometry on biodegradation and plasticization properties. Chemosphere, 2012. 86: p. 759-766.
    79. Llanes, L.C., S.H. Clasen, A.T. Pires, and I.P. Gross, Mechanical and thermal properties of poly (lactic acid) plasticized with dibutyl maleate and fumarate isomers: Promising alternatives as biodegradable plasticizers. European Polymer Journal, 2021. 142: p. 110112-110123.
    80. Bouma, K. and D.J. Schakel, Migration of phthalates from PVC toys into saliva simulant by dynamic extraction. Food Additives and Contaminants, 2002. 19: p. 602-610.
    81. Kambia, K., T. Dine, R. Azar, B. Gressier, M. Luyckx, and C. Brunet, Comparative study of the leachability of di(2-ethylhexyl) phthalate and tri(2-ethylhexyl) trimellitate from haemodialysis tubing. International Journal of Pharmaceutics, 2001. 229: p. 139-146.
    82. Watanabe, M., S. Ohno, and S. Nakajin, Effects of bisphenol A on the expression of cytochrome P450 aromatase (CYP19) in human fetal osteoblastic and granulosa cell-like cell lines. Toxicology Letters, 2012. 210: p. 95-99.
    83. Kim, Y., E.H. Ha, E.J. Kim, H. Park, M. Ha, J.H. Kim, Y.C. Hong, N. Chang, and B.N. Kim, Prenatal Exposure to Phthalates and Infant Development at 6 Months: Prospective Mothers and Children’s Environmental Health (MOCEH) Study. Environmental Health Perspectives, 2011. 119: p. 1495-1500.
    84. Pérez-Albaladejo, E., D. Fernandes, S. Lacorte, and C. Porte, Comparative toxicity, oxidative stress and endocrine disruption potential of plasticizers in JEG-3 human placental cells. Toxicology in Vitro, 2017. 38: p. 41-48.
    85. Maestre-Batlle, D., O.M. Pena, R.D. Huff, A. Randhawa, C. Carlsten, and A.K. Bølling, Dibutyl phthalate modulates phenotype of granulocytes in human blood in response to inflammatory stimuli. Toxicology Letters, 2018. 296: p. 23-30.
    86. Bielanowicz, A., R.W. Johnson, H. Goh, S.C. Moody, I.J. Poulton, N. Croce, K.L. Loveland, M.P. Hedger, N.A. Sims, and C. Itman, Prepubertal Di-n-Butyl Phthalate Exposure Alters Sertoli and Leydig Cell Function and Lowers Bone Density in Adult Male Mice. Endocrinology, 2016. 157: p. 2595-2603.
    87. Cui, Y., B. Li, J. Du, S. Huo, M. Song, B. Shao, B. Wang, and Y. Li, Dibutyl phthalate causes MC3T3-E1 cell damage by increasing ROS to promote the PINK1/Parkin-mediated mitophagy. Environmental Toxicology, 2022. 37: p. 2341-2353.
    88. Bhat, F.A., G. Ramajayam, S. Parameswari, R.C. Vignesh, S. Karthikeyan, K. Senthilkumar, G.D. Karthikeyan, K. Balasubramanian, J. Arunakaran, and N. Srinivasan, Di 2-ethyl hexyl phthalate affects differentiation and matrix mineralization of rat calvarial osteoblasts – in vitro. Toxicology in Vitro, 2013. 27: p. 250-256.
    89. Halloran, M.W., J.A. Nicell, R.L. Leask, and M. Marić, Bio-based glycerol plasticizers for flexible poly(vinyl chloride) blends. Journal of Applied Polymer Science, 2022. 139: p. e52778-e52789.
    90. Saltos, J.A., W. Shi, A. Mancuso, C. Sun, T. Park, N. Averick, K. Punia, J. Fata, and K. Raja, Curcumin-derived green plasticizers for poly (vinyl) chloride. RSC advances, 2014. 4: p. 54725-54728.
    91. Eljezi, T., P. Pinta, D. Richard, J. Pinguet, J.-M. Chezal, M.-C. Chagnon, V. Sautou, G. Grimandi, and E. Moreau, In vitro cytotoxic effects of DEHP-alternative plasticizers and their primary metabolites on a L929 cell line. Chemosphere, 2017. 173: p. 452-459.
    92. Kaygusuz, B. and S. Özerinç, Improving the ductility of polylactic acid parts produced by fused deposition modeling through polyhydroxyalkanoate additions. Journal of Applied Polymer Science, 2019. 136: p. 48154.
    93. Mencik, P., R. Prikryl, I. Stehnova, V. Melcova, S. Kontarova, S. Figalla, P. Alexy, and J. Bockaj, Effect of Selected Commercial Plasticizers on Mechanical, Thermal, and Morphological Properties of Poly(3-hydroxybutyrate)/Poly(lactic acid)/Plasticizer Biodegradable Blends for Three-Dimensional (3D) Print. Materials, 2018. 11: p. 1893-1913
    94. Serra, T., J.A. Planell, and M. Navarro, High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomaterialia, 2013. 9: p. 5521-5530.
    95. Ali, F., Y.-W. Chang, S.C. Kang, and J.Y. Yoon, Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polymer Bulletin, 2009. 62: p. 91-98.
    96. Etang Ayuk, J., A.P. Mathew, and K. Oksman, The effect of plasticizer and cellulose nanowhisker content on the dispersion and properties of cellulose acetate butyrate nanocomposites. Journal of Applied Polymer Science, 2009. 114: p. 2723-2730.
    97. Bajwa, D., M. Eichers, J. Shojaeiarani, and A. Kallmeyer, Influence of biobased plasticizers on 3D printed polylactic acid composites filled with sustainable biofiller. Industrial Crops and Products, 2021. 173: p. 114132-11440.
    98. Chia, H.N. and B.M. Wu, Improved resolution of 3D printed scaffolds by shrinking. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2015. 103: p. 1415-1423.
    99. Huang, P.R., P. Yang, K.M. Liu, W. Tao, J. Tao, and F.R. Ai, Evaluation of 'surgery-friendly' bone scaffold characteristics: 3D printed ductile BG/PCL scaffold with high inorganic content to repair critical bone defects. BIOMEDICAL MATERIALS, 2023. 18: p. 015021-015034
    100. Ng, J.Y., P. Yu, D.M. Murali, Y.-S. Liu, R. Gokhale, and P.L.R. Ee, The influence of pregelatinized starch on the rheology of a gellan gum-collagen IPN hydrogel for 3D bioprinting. Chemical Engineering Research and Design, 2023. 192: p. 477-486.
    101. Mesa Múnera, E., J.F. Ramírez Salazar, P. Boulanger, and J.W. Branch, Inverse-FEM characterization of a brain tissue phantom to simulate compression and indentation. Ingeniería y Ciencia, 2012. 8: p. 11-36.
    102. Krohn, R.I., The Colorimetric Detection and Quantitation of Total Protein. Current Protocols in Toxicology, 2005. 23: p. A.3I.1-A.3I.28.
    103. Di Gioia, L. and S. Guilbert, Corn Protein-Based Thermoplastic Resins:  Effect of Some Polar and Amphiphilic Plasticizers. Journal of Agricultural and Food Chemistry, 1999. 47: p. 1254-1261.
    104. Liu, H., Y. Chen, H. Zhu, Y. Ma, C. Lian, and X. Shi, Influences of plasticizer molecular structure and content on flexural fatigue of soft poly(vinyl chloride). Journal of Vinyl and Additive Technology, 2022. 28: p. 706-718.
    105. Rezvani Ghomi, E., F. Khosravi, Z. Mossayebi, A. Saedi Ardahaei, F. Dehaghi, M. Khorasani, R. Esmaeely Neisiany, O. Das, A. Marani, R. Mensah, L. Jiang, Q. Xu, M. Försth, F. Berto, and S. Ramakrishna, The Flame Retardancy of Polyethylene Composites: From Fundamental Concepts to Nanocomposites. Molecules, 2020. 25: p. 5157-5185.
    106. Bakar, M. and F. Djaider, Effect of plasticizers content on the mechanical properties of unsaturated polyester resin. Journal of Thermoplastic Composite Materials, 2007. 20: p. 53-64.
    107. Tanrattanakul, V. and P. Bunkaew, Effect of different plasticizers on the properties of bio-based thermoplastic elastomer containing poly(lactic acid) and natural rubber. Express Polymer Letters, 2014. 8: p. 387-396.
    108. Honary, S. and H. Orafai, The effect of different plasticizer molecular weights and concentrations on mechanical and thermomechanical properties of free films. Drug development and industrial pharmacy, 2002. 28: p. 711-715.
    109. Brdlík, P., J. Novák, M. Borůvka, L. Běhálek, and P. Lenfeld, The influence of plasticizers and accelerated ageing on biodegradation of PLA under controlled composting conditions. Polymers, 2022. 15: p. 140-171.
    110. Liu, H. and J. Zhang, Research progress in toughening modification of poly(lactic acid). Journal of Polymer Science Part B: Polymer Physics, 2011. 49: p. 1051-1083.
    111. Petrovics, N., C. Kirchkeszner, T. Tábi, N. Magyar, I. Kovácsné Székely, B.S. Szabó, Z. Nyiri, and Z. Eke, Effect of temperature and plasticizer content of polypropylene and polylactic acid on migration kinetics into isooctane and 95 v/v% ethanol as alternative fatty food simulants. Food Packaging and Shelf Life, 2022. 33: p. 100916-100926.
    112. Abbott, S., Solubility science: principles and practice. University of Leeds: Leeds, UK, 2017: p. 109-110.
    113. Boucher, D.S., Solubility parameters and solvent affinities for polycaprolactone: A comparison of methods. Journal of Applied Polymer Science, 2020. 137: p. 48908.
    114. Jamarani, R., H.C. Erythropel, D. Burkat, J.A. Nicell, R.L. Leask, and M. Maric, Rheology of Green Plasticizer/Poly(vinyl chloride) Blends via Time–Temperature Superposition. Processes, 2017. 5: p. 43-56.
    115. Bodaghi, A., An overview on the recent developments in reactive plasticizers in polymers. Polymers for Advanced Technologies, 2020. 31: p. 355-367.
    116. Gama, N., R. Santos, B. Godinho, R. Silva, and A. Ferreira, Triacetin as a Secondary PVC Plasticizer. Journal of Polymers and the Environment, 2019. 27: p. 1294-1301.
    117. Arias, V., A. Höglund, K. Odelius, and A.-C. Albertsson, Polylactides with “green” plasticizers: Influence of isomer composition. Journal of Applied Polymer Science, 2013. 130: p. 2962-2970.
    118. Nie, J., M. Li, W. Liu, W. Li, and Z. Xing, The role of plasticizer in optimizing the rheological behavior of ceramic pastes intended for stereolithography-based additive manufacturing. Journal of the European Ceramic Society, 2021. 41: p. 646-654.
    119. Krauklis, A.E. and A.T. Echtermeyer, Mechanism of Yellowing: Carbonyl Formation during Hygrothermal Aging in a Common Amine Epoxy. Polymers, 2018. 10: p. 1017-1032.
    120. Pagacz, J., M. Chrzanowski, I. Krucińska, and K. Pielichowski, Thermal aging and accelerated weathering of PVC/MMT nanocomposites: Structural and morphological studies. Journal of Applied Polymer Science, 2015. 132: p. 42090-42102.
    121. Priya, A.M. and L. Senthilkumar, Reaction of OH radical and ozone with methyl salicylate – a DFT study. Journal of Physical Organic Chemistry, 2015. 28: p. 542-553.
    122. O'Donnell, B. and J.R. White, Stress-accelerated photo-oxidation of polypropylene and glass-fibre-reinforced polypropylene. Polymer Degradation and Stability, 1994. 44: p. 211-222.
    123. Tüzüm Demir, A.P. and Y. Ergün, Assessment of the effect on the plasticizer diffusion of inorganic fillers in plasticized poly(vinyl chloride) composite films for cable sheath applications. Journal of Applied Polymer Science, 2023. 140: p. e53996-e54017.
    124. Tröger, C., A.T. Bens, G. Bermes, R. Klemmer, J. Lenz, and S. Irsen, Ageing of acrylate‐based resins for stereolithography: thermal and humidity ageing behaviour studies. Rapid Prototyping Journal, 2008. 14: p. 305-317.
    125. González López, J.A., A. Fonseca García, R. Acosta Ortiz, R. Betancourt Galindo, E. Martínez Ruiz, and M.E. Treviño Martínez, Photopolymerizable dental composite resins with lower shrinkage stress and improved hydrolytic and hygroscopic behavior with a urethane monomer used as an additive. Journal of the Mechanical Behavior of Biomedical Materials, 2022. 130: p. 105189-105197.
    126. Liu, S., X. Zhang, M. Bu, and C. Lei, Properties tailoring of biobased epoxy resins by regulating the degree of polymerization of oligomers. European Polymer Journal, 2022. 173: p. 111253-111256.
    127. Chia, H.N. and B.M. Wu, High-resolution direct 3D printed PLGA scaffolds: print and shrink. Biofabrication, 2014. 7: p. 015002-015014.
    128. Li, T., H. Chen, Y. Zhang, Y. Gu, C. Hu, S. Li, B. Liu, W. Duan, and G. Wang, A comprehensive evaluation of vat-photopolymerization resins and alumina slurries for ceramic stereolithography. Ceramics International, 2023. 49: p. 6440-6450.
    129. González López, J.A., A. Fonsec García, R. Acosta Ortiz, R. Betancourt Galindo, E. Martínez Ruiz, and M.E. Treviño Martínez, Photopolymerizable dental composite resins with lower shrinkage stress and improved hydrolytic and hygroscopic behavior with a urethane monomer used as an additive. Journal of the Mechanical Behavior of Biomedical Materials, 2022. 130: p. 105189-105197.
    130. Dang, M., X. Yue, G. Zhou, and S. Hu, Influence of resin composition on rheology and polymerization kinetics of alumina ceramic suspensions for digital light processing (DLP) additive manufacturing. Ceramics International, 2023. 49: p. 20456-20464.
    131. Liu, S., X. Zhang, M. Bu, and C. Lei, Properties tailoring of biobased epoxy resins by regulating the degree of polymerization of oligomers. European Polymer Journal, 2022. 173: p. 111253-111256.
    132. Mishra, D.K. and P.M. Pandey, Mechanical behaviour of 3D printed ordered pore topological iron scaffold. Materials Science and Engineering: A, 2020. 783: p. 139293-139298.
    133. Molchadsky, A., N. Rivlin, R. Brosh, V. Rotter, and R. Sarig, p53 is balancing development, differentiation and de-differentiation to assure cancer prevention. Carcinogenesis, 2010. 31: p. 1501-1508.
    134. Yin, N., S. Liang, S. Liang, B. Hu, R. Yang, Q. Zhou, G. Jiang, and F. Faiola, DEP and DBP induce cytotoxicity in mouse embryonic stem cells and abnormally enhance neural ectoderm development. Environmental Pollution, 2018. 236: p. 21-32.
    135. Mekala, J.R., R.K. Kurappalli, P. Ramalingam, and N.R. Moparthi, N-acetyl l-aspartate and Triacetin modulate tumor suppressor MicroRNA and class I and II HDAC gene expression induce apoptosis in Glioblastoma cancer cells in vitro. Life Sciences, 2021. 286: p. 120024-120041.
    136. Wang, J., X. Zhao, J. Chen, X. Li, D. Hao, T. Li, K. Mei, Y. Lan, and Q. Wu, Efficacy and mechanism of methyl salicylate in the enhancement of skin delivery of herbal medicines. Journal of Traditional Chinese Medical Sciences, 2021: p. 336-342.
    137. Liu, C., J.-B. Zeng, S.-L. Li, Y.-S. He, and Y.-Z. Wang, Improvement of biocompatibility and biodegradability of poly (ethylene succinate) by incorporation of poly (ethylene glycol) segments. Polymer, 2012. 53: p. 481-489.
    138. Boisvert, A., S. Jones, L. Issop, H.C. Erythropel, V. Papadopoulos, and M. Culty, In vitro functional screening as a means to identify new plasticizers devoid of reproductive toxicity. Environmental Research, 2016. 150: p. 496-512.
    139. Ledniowska, K., H. Nosal-Kovalenko, W. Janik, A. Krasuska, D. Stańczyk, E. Sabura, M. Bartoszewicz, and A. Rybak, Effective, environmentally friendly PVC plasticizers based on succinic acid. Polymers, 2022. 14: p. 1295-1317.
    140. Pérez Albaladejo, E., D. Fernandes, S. Lacorte, and C. Porte, Comparative toxicity, oxidative stress and endocrine disruption potential of plasticizers in JEG-3 human placental cells. Toxicology in Vitro, 2017. 38: p. 41-48.
    141. Seddiqi, H., A. Saatchi, G. Amoabediny, M.N. Helder, S. Abbasi Ravasjani, M. Safari Hajat Aghaei, J. Jin, B. Zandieh-Doulabi, and J. Klein-Nulend, Inlet flow rate of perfusion bioreactors affects fluid flow dynamics, but not oxygen concentration in 3D-printed scaffolds for bone tissue engineering: Computational analysis and experimental validation. Computers in Biology and Medicine, 2020. 124: p. 103826-103890.
    142. Yaghoobi, M., S. Hashemi-Najafabadi, M. Soleimani, and E. Vasheghani-Farahani, Osteogenic induction of human mesenchymal stem cells in multilayered electrospun scaffolds at different flow rates and configurations in a perfusion bioreactor. Journal of bioscience and bioengineering, 2019. 128: p. 495-503.
    143. Zhu, Y., D. Qin, J. Liu, G. Wu, H. Wang, F. Wu, Y. Liu, Y. Liu, X. Cheng, and X. Chen, Chitin whiskers enhanced methacrylated hydroxybutyl chitosan hydrogels as anti-deformation scaffold for 3D cell culture. Carbohydrate Polymers, 2023. 304: p. 120483-120505.
    144. Di Maggio, N., E. Piccinini, M. Jaworski, A. Trumpp, D.J. Wendt, and I. Martin, Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials, 2011. 32: p. 321-329.
    145. Zanetta, M., N. Quirici, F. Demarosi, M.C. Tanzi, L. Rimondini, and S. Farè, Ability of polyurethane foams to support cell proliferation and the differentiation of MSCs into osteoblasts. Acta Biomaterialia, 2009. 5: p. 1126-1136.
    146. Horikawa, A., K. Okada, K. Sato, and M. Sato, Morphological changes in osteoblastic cells (MC3T3-E1) due to fluid shear stress: Cellular damage by prolonged application of fluid shear stress. Tohoku Journal of Experimental Medicine, 2000. 191: p. 127-137.
    147. Theodoridis, K., E. Aggelidou, M. Manthou, E. Demiri, A. Bakopoulou, and A. Kritis, Assessment of cartilage regeneration on 3D collagen-polycaprolactone scaffolds: Evaluation of growth media in static and in perfusion bioreactor dynamic culture. Colloids and Surfaces B: Biointerfaces, 2019. 183: p. 110403-110412.
    148. Moche, H., A. Chentouf, S. Neves, J.M. Corpart, and F. Nesslany, Comparison of In Vitro Endocrine Activity of Phthalates and Alternative Plasticizers. Journal of Toxicology, 2021. 2021: p. 8815202-8815216.
    149. Lan, K.C., T. Weng, W.C. Chiang, C.Y. Chiu, D.C. Chan, R.S. Yang, and S.W. Liu, Plasticizer Di-(2-ethylhexyl) Phthalate and Its Metabolite Mono(2-ethylhexyl) Phthalate Inhibit Myogenesis in Differentiating Mouse and Human Skeletal Muscle Cell Models. Applied Sciences-Basel, 2022. 12: p. 9195-9295.
    150. Stein, G.S., J.B. Lian, J.L. Stein, A.J. Van Wijnen, and M. Montecino, Transcriptional control of osteoblast growth and differentiation. Physiological reviews, 1996. 76: p. 593-629.
    151. Kyriakidou, K., G. Lucarini, A. Zizzi, E. Salvolini, M.M. Belmonte, F. Mollica, A. Gloria, and L. Ambrosio, Dynamic co-seeding of osteoblast and endothelial cells on 3D polycaprolactone scaffolds for enhanced bone tissue engineering. Journal of Bioactive and Compatible Polymers, 2008. 23: p. 227-243.
    152. Chen, X.B., A. Fazel Anvari-Yazdi, X. Duan, A. Zimmerling, R. Gharraei, N.K. Sharma, S. Sweilem, and L. Ning, Biomaterials / bioinks and extrusion bioprinting. Bioactive Materials, 2023. 28: p. 511-536.
    153. Jakus, A.E., A.L. Rutz, S.W. Jordan, A. Kannan, S.M. Mitchell, C. Yun, K.D. Koube, S.C. Yoo, H.E. Whiteley, C.P. Richter, R.D. Galiano, W.K. Hsu, S.R. Stock, E.L. Hsu, and R.N. Shah, Hyperelastic "bone": A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial. Science Translational Medicine, 2016. 8: p. 358ra127-358ra143.

    無法下載圖示 全文公開日期 2033/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2028/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE