簡易檢索 / 詳目顯示

研究生: 莊健峰
Chien-Fang Chuang
論文名稱: 甲醇分子在氧化銥(110)、銥/氧化銥(110)以及富氧狀態下的氧化銥(110)表面吸附作用與裂解反應之研究
Theoretical Study of methanol adsorption and dehydrogenation on IrO2(110), Ir/IrO2(110) and O/IrO2(110) surface
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 林聖賢
Sheng-Hsien Lin
魏金明
Jin-Ming Wei
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 136
中文關鍵詞: IrO2密度泛涵理論計算甲醇分子裂解反應Ir/ IrO2
外文關鍵詞: methanol decomposition, DFT, IrO2, Ir/IrO2
相關次數: 點閱:160下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文中主要是利用密度泛涵理論(DFT)計算方法,研究甲醇氣體分子在IrO2(110)、Ir/IrO2(110)以及O/IrO2(110)表面上的吸附以及裂解之反應機制。經過結構最佳化計算後發現,甲醇分子在IrO2(110)表面上,不是以甲醇分子形態吸附,而是經過O—H鍵裂解後,形成甲氧基分子吸附在Ircus上以及H原子吸附在Obr的位置。接著在後續的氫裂解反應中,有三種步驟都有近似的反應能障,分別是甲氧基分子發生氫裂解反應,還有甲醛分子發生氫裂解反應,以及H原子在Obr之間的遷移反應。因此,若考慮計算誤差,這三種反應都有可能為此反應機制之速率決定步驟。另外,甲醇分子吸附在Ir/IrO2表面的研究中,考慮了四種不同的吸附位置,而取了其中兩種較穩定的吸附結構,當作裂解反應的起始點,再比較不同的起始點所發生的裂解反應,發現CHO分子以四元環結構吸附在表面上,會毒化此觸媒表面,造成下一步的裂解反應能障變高,因此若能避免此吸附結構發生,反應能障則大幅降低。接著討論甲醇分子吸附在富氧的IrO2(110)表面,發現甲醇分子是以分子型態吸附在Ircus上,與吸附在IrO2(110)表面不同。而在後續的裂解反應中,其速率決定步驟為CHO分子裂解,其反應能障為1.74 eV。比較甲醇分子在三種不同的表面下之裂解反應,發現在Ir/IrO2表面上,O—H鍵結裂解之反應能障遠遠高於其他表面。另外,在富氧的情形下,並沒有降低甲醇分子裂解反應之能障。


Periodic, Density Functional Theory (PW91-GGA) calculations are used to study competitive paths for methanol decomposition on rutile-type IrO2(110), 1/2ML Ir/ IrO2(110), and Oxygen rich IrO2(110) surface. The energy barriers for all the elementary steps, starting with O—H scission and proceeding via sequential hydrogen abstraction from the resulting methoxy intermediate, are presented here. The minimum energy path is represented by a potential energy connecting methanol with its final decomposition product, carbon monoxide (CO). For methanol decomposition on IrO2(110) surface, the energy barriers of methoxy dehydrogenation, formaldehyde dehydrogenation, and hydrogen diffusion between Obr are very close and those are higher than other reactions. On Ir/IrO2 surface, there are four possible methanol adsorption structures, and the two most stable structures are used to be the initial state of methanol decomposition on Ir/IrO2 surface. The calculated result shows the adsorption of CHO on the surface with four member ring conformation is very close,which may poison the catalytic surface. The structure of methanol adsorption on IrO2 is different from O/IrO2 . The rate determining step of methanol decomposition on O/IrO2 surface is CHO, and decomposition, the energy barrier is 1.74 eV.

目錄 摘要 ……………………………………………………………………I 致謝 ……………………………………………………………………Ⅳ 目錄 ……………………………………………………………………Ⅴ 圖目錄 ………………………………………………………………Ⅷ 表目錄 ……………………………………………………………XⅢ 第一章 緒論…………………………………………………………… 1 1.1 前言 ………………………………………………………… 1 1.2 燃料電池的發展與應用 …………………………………… 3 1.3 燃料電池的總類 …………………………………………… 5 1.3.1 鹼液型燃料電池(AFC) ………………………………5 1.3.2質子交換薄膜型燃料電池(PEMFC) …………………5 1.3.3磷酸型燃料電池(PAFC) ………………………………6 1.3.4熔融碳酸鹽型燃料電池(MCFC) ………………… 6 1.3.5固態氧化物型燃料電池(SOFC)………………………7 1.3.6直接甲醇燃料電池(DMFC) …………………………8 1.4直接甲醇燃料電池之電化學原理 ………………………… 13 1.5直接甲醇燃料電池之構造與發展狀況 ……………………15 1.5.1 DMFC之電解質薄膜 ……………………………… 15 1.5.2 DMFC之陰極材料 …………………………………16 1.5.3 DMFC之陽極材料 …………………………………17 1.6甲醇分子在表面之裂解反應機制 ………………18 1.7氧化銥之應用與文獻回顧 …………………………………20 1.8 研究動機與目的……………………………………………24 第二章 計算方法………………………………………………………25 2.1密度泛涵理論………………………………………25 2.2 LDA與GGA………………………………………27 2.3 週期系統的處理……………………………………29 2.3.1 Bloch定理…………………………………………29 2.3.2 Plane-wave basis set………………………………30 2.3.3贗勢與PAW ………………………………………30 2.3.4 Projector augmented-wave (PAW) method………32 2.4 Nudged elastic band method (NEB)……………………34 2.5 k點取樣 (K-point Sampling )……………………36 2.6計算方法…………………………………………35 第三章 結果與討論……………………………………………………39 3.1表面之建立…………………………………………………39 3.1.1 IrO2 單元晶胞……………………………………39 3.1.2 IrO2(110) 表面………………………………………40 3.2甲醇分子在IrO2 (110)表面裂解之中間產物分析………42 3.3甲醇分子在1/2ML Ir/IrO2 (110)表面裂解之中間產物分 析…………………………………………………………57 3.4 甲醇分子在O/IrO2 (110)表面裂解之中間產物分析………67 3.5 甲醇分子在IrO2、O/IrO2以及Ir/IrO2 (110)表面之裂解反應 機制………………………………………………………75 3.5.1甲醇分子在IrO2 (110)表面之裂解反應……………75 3.5.2甲醇分子在1/2 ML Ir/IrO2 (110)表面之裂解反 應……………………………………………………82 3.5.3甲醇分子在O/IrO2 (110)表面之裂解反應…………..95 3.5.4甲醇分子在IrO2、Ir/IrO2、與O/IrO2表面裂解反應之 比較……………………………………………..…102 第四章 結論………………..……………………………………..…109 文獻參考………..…………………………………………………..112

參考文獻
1. 吳滄琪,磺酸化高分子於燃料電池質子交換膜製備之應用,元智大學化工系(2003).
2. A. Heinzel, R. Nolte, K. Ledjeff-Hey and M. Zedda, Electrochim. Acta, 43, 3817 (1998).
3. 鄭耀宗,徐耀昇,燃料電池技術進展的現況,燃料電池論文集,15-27 (1989).
4. S. Surampudi, S. R. Narayanan, and E. Vamos, Journal of Power Sources, 47, 377 (1994).
5. M. P. Hogarth, and G. A. Hards, Platinum Metal Rev., 40, 150 (1996).
6. J. Shim, D. Y. Yoo, and J. S. Lee, Electrochim. Acta, 45, 1943 (2000).
7. D. Mei , and N. A. Deskins , J. Phys. Chem. C , 111, 10514 (2007).
8. S. Sakong and A. Gross , J. Phys. Chem. A , 111 , 8814 (2007).
9. G. C. Wang and Y. H. Zhou , J. Phys. Chem. B,109,12431(2000).
10. R. Sanchez de Armas , and J. Oviedo, J. Phys. Chem. C , 111 , 10023 (2007).
11. C. J. Zhang and P. Hu , J. Chem. Phys. ,115, 15, 7182 (2001).
12. Y. Ishikawa , M. S. Liao , and C. R. Cabrera , Surface Science 463 , 66 (2000).
13. J. Greeley and M. Macrikakis , J. AM. Chem. Soc.,124, 7193 (2002).
14. C. J. Weststrate , W. Ludwig and J. W. Bakker , J. Phys. Chem. C , 111 , 7741 (2007).
15. Adrian A. Bolzan, Celesta Fong, Brendan J.Kennedy'z Christopher J. Howard Acta. Cryst. (1997). B53, 373-380.
16. JCPDS card no. 15-0870 (IrO2), International Centre for Diffraction Data Newtown Square, PA, USA.
17. L. F. Mattheiss, Phys. Rev. B, Vol. 13, pp.2433-2450 (1976).
18. W. D. Ryden and A. W. Lawson, C. C. Sartain, Phys. Rev. B, Vol. 1, pp.1494-4500 (1970).
19. R. C. Weast (Ed.) Handbok and Chemistry and Physics, F146 (1989).
20. T. Nakamura, K. Nakao, A. Kamisawa, H. Takasu, Jpn. J. Appl. Phys., Part 1, Vol. 34, pp5184 (1995).
21. T. Tamura, K. Matsuura, H. Ashida, K. Kondo, S. Otani, Appl. Phys. Lett., Vol. 74, NO. 22, p.3395 (1999).
22. T. Nakamura, Y. Nakao, A. Kamisawa, H. Takasu, Appl. Phys. Lett., Vol.65 p.1522 (1994).
23. A. Osaka, T. Takatsuna, Y. Miura, J. Non-crystalline Solids, Vol. 178 P.313 (1994).
24. N. Bestaoui, E. Prouzet, P. Deniard, and R. Brec, Thin Solid Films, Vol. 235, p.35 (1993).
25. T. Ioroi, N. Kitazawa, K. Yasuda, Y. Yamamoto, H. Takenaka, J. Electrochem. Soc., Vol. 147 NO. 6, p. 2018 (2000).
26. R. S. Chen, Y. S. Huang, Y. M. Liang, C. S. Hsieh, D. S. Tsai, K. K. Tiong, Appl. Phys. Lett., 84 NO.9, pp.1552-1554 (2004).
27. A. Karthugeyan, R. P. Gupta, K. Scharnagl, M. Burgmair, S. K. Sharma, I. Eisele, Sens, Actuators B, 85 pp. 145-153 (2002).
28. Zhi-Pan. Liu, Stephen J. Jenkins, David A. King, Phys. Rev. Lett., 93, 156102 (2004)..
29. Shigeaki. Ono, Takumi. Kikegqwa, Yasuo Ohishi, Phys B, 363, 140-145, (2005).
30. P. F. McMillan, Nature Mater. 1, 19 (2002).
31. J. m. Hu, J. Q. Zhang, C. N. Cao, Int. J. Hydrogen energy, 29 pp. 791-797 (2004).
32. C. P. de Paul, S. Trasatti, J. Electroanal. Chem., pp. 145-151 (2002).
33. A. J. Terezo, E. C. Pereira, Electrochimica Acta, 45 pp. 4351-4358 (2000).
34. M. V. Kortenaar, J. F. Vente, D. J. W. Ijdo, S. Muller, R. Kotz, J. power Sources, 56 pp.51-60 (1995).
35. R. Kotz, S. Stuci, Electrochimica Acta, 31 pp.1311-1316 (1986).
36. S. C. Mailley, M. Hyland, P. Mailley, J. M. McLaughlin, E. T. McAdams, Mater. Sci. Eng’ng., 21 pp. 167-175 (2002).
37. A. Blau, C. Ziegler, m. Heyer, F. Endres, G. W. Gopel, Biosenser & Bioelectronics, 12 pp. 883-892 (1997).
38. A. Norlin, J. Pau, C. Leygraph, J. Electrochem. Soc., 152 J85-J92 (2005).
39. R. D. Meyer, S. F. Cogan,T. H. Nguyen, R. D. Rauh, IEEE trans on Natural Systems and Rehabilitation Engineering, 9 pp. 2-11 (2001).
40. A. Hamnett, B. J. Kennedy, Electrochimica Acta, 33 pp. 1613-1618 (1988).
41. H. Tsaprailis, V. I. Birss, Electrochem, Solid-state Lett., 7 A348-352 (2004).
42. R. Gomez, M. J. Weavrz, Langmuir, 14 pp.2525-2534 (1998).
43. C. Tang, S. Zou, M. W. Severson, M. J. Weaver, J. Phys. Chem. B, 102 pp.8546-8556 (1998).
44. R. Gomez, M. J. Weavrz, J. Phys. Chem. B, 102 pp.3754-3764 (1998).
45. A. Chen, D. J. La Russa, B. Miller, Langmuir, 20 pp. 9695-9702 (2004).
46. P. Hohenberg, W. Kohn, Physical Review 136, 8648 (1964).
47. W. Kohn, and L. J. Sham, Phys. Rev. 140, 1133A (1965).
48. P. Hohenberg, and and W. Kohn, Phys. Rev., 136, 8648 (1964).
49. Blochl, P. E. Phys. ReV. B 1994, 50, 17953. (b) Kresse, G.; Joubert, D. Phys. ReV. B 1999, 59, 1758.
50. Clotet, A.; Pacchioni, G. Surf. Sci. 1996, 346, 91.
51. JCPDS card #40-1290..
52. P.E. Blochl, Physical Review B 50, 17953 (1994).
53. H. Jonsson, G. Mills and K. W. Jacobsen, `Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions', in `Classical and Quantum Dynamics in Condensed Phase Simulations', ed. B. J. Berne, G. Ciccotti and D. F. Coker (World Scientific, 1998).
54. G. Mills and H. Jo′nsson, Phys. Rev. Lett. 72, 1124 (1994).
55. G. Mills, H. Jo′nsson, and G. K. Schenter, Surf. Sci. 324, 305 (1995).
56. Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
57. Kresse, G.; Furthmuller, J. Comput. Mater. Sci. 1996, 6, 15.
58. Kresse, G.; Hafner, J. Phys. ReV. B 1996, 54, 169.
59. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Physical Review B 46, 6671 (1992).
60. J. A. White, D.M. Bird Physical Review B 50, 169 (1994).
61. Ulitsky, A.; Elber, R. J. Chem. Phys. 1990, 92, 1510.
62. Mills, G.; Jo’nsson, H.; Schenter, G. K. Surf. Sci. 1995, 324, 305.
63. Henkelman, G.; Uberuaga, B. P.; Jo’nsson, H. J. Chem. Phys. 2000,113, 9901.
64. 陳亭傑,一氧化碳,氧氣以及水分子在鉑-銥/氧化銥(110)表面進行吸附作用與化學反應之研究,台灣科技大學化工系(2007).
65. A. Montoya and B. S. Haynes , J. Phys. Chem. C ,111, 9867 (2007).
66. J.Greeley and M. Mavrikakis , J. Am. Chem. Soc. , 126 , 3910 (2004).
67. A. Tilocca and A. Selloni , J. Phys. Chem. B , 108 , 19314 (2004) .
68. Woei Wu Pai , T.Y. Wu, C.H. Lin, B.X. Wang, Y.S. Huang, H.L. Chou, Surface Science 601, 69-72, 2007 .
69. Wachs,I. E. ; Madix, R. J. , J. Catal. 53, 208(1978).
70. Madix, R. J. ; Telford, S. G. , Sruf. Sci., 328, L576 (1995).

QR CODE